Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols reactions during aromatization

Mn02 has been widely used to carry out various dehydrogenation and aromatization reactions (eqs 38-41). In some cases the dehydrogenation can occur as a side reaction during, for instance, the hydration of nitriles (eq 37) or the oxidation of allylic alcohols. ... [Pg.252]

Volatile components constitute about 0.1% of roasted coffee by weight Cojfea species, Rubiaceae), and more than 200 substances have been shown in green coffee. More than 800 compounds are known to make up the aroma of roasted coffee. Of these, only about 60 compounds have a significant role in the coffee aroma. Especially typical are a large number of heterocyclic compounds, mainly furans, pyrroles, indoles, pyridines, quinolines, pyrazines, quinoxalines, thiophenes, thiazoles and oxazoles, which arise in caramehsation and the MaiUard reaction during coffee roasting. In addition to heterocyclic products, other important volatiles are also some aliphatic compounds (hydrocarbons, alcohols, carbonyl compounds, carboxylic acids, esters, aliphatic sulfur and nitrogen compounds), alicyclic compounds (especially ketones) and aromatic compounds (hydrocarbons, alcohols, phenols, carbonyl compounds and esters). [Pg.621]

It is a complex variable polymer, derived from sugars via aromatic alcohols. Phenyl-propane (Cg-C ) units are linked in various ways by oxidation reactions during polymerization. [Pg.134]

This ladical-geneiating reaction has been used in synthetic apphcations, eg, aioyloxylation of olefins and aromatics, oxidation of alcohols to aldehydes, etc (52,187). Only alkyl radicals, R-, are produced from aliphatic diacyl peroxides, since decarboxylation occurs during or very shortiy after oxygen—oxygen bond scission in the transition state (187,188,199). For example, diacetyl peroxide is well known as a source of methyl radicals (206). [Pg.124]

Many aromatic steroids submitted to the Birch reduction contain hydroxyl groups which are deprotonated to the corresponding alkoxides during the reduction, particularly if a tertiary alcohol is used as the proton donoi. The steroidal alkoxides and the one derived from the proton donor often precipitate and cause foaming of the reaction mixture, as was noted by Wilds and Nelson. These alkoxides can be kept in solution by adding an excess of the proton donor alcohol to the mixture the alcohol also assists in dissolving the starting hydroxylic steroid. A particularly useful reaction medium for hydroxylic steroids contains ammonia, tetrahydrofuran and -butyl alcohol in the volume ratio of 2 1 (Procedure 2, section V). This mixture... [Pg.26]

Acid chloride 5 is readily available from the known benzylic alcohol 6,4e but intermediate 4 is still rather complex. It was recognized that compound 4 could conceivably be formed in one step from 2-methoxyfuran (9)10 and iodotriflate 10. The latter compound was designed with the expectation that it could be converted to benzyne 8," a highly reactive species that could be intercepted in an intermolecular Diels-Alder reaction with 2-methoxyfuran (9) to give 7. The intermediacy of 7 is expected to be brief, for it should undergo facile conversion to the aromatized isomer 4 either in situ or during workup. [Pg.510]

From the preceding discussion, it is easily understood that direct polyesterifications between dicarboxylic acids and aliphatic diols (Scheme 2.8, R3 = H) and polymerizations involving aliphatic or aromatic esters, acids, and alcohols (Scheme 2.8, R3 = alkyl group, and Scheme 2.9, R3 = H) are rather slow at room temperature. These reactions must be carried out in the melt at high temperature in the presence of catalysts, usually metal salts, metal oxides, or metal alkoxides. Vacuum is generally applied during the last steps of the reaction in order to eliminate the last traces of reaction by-product (water or low-molar-mass alcohol, diol, or carboxylic acid such as acetic acid) and to shift the reaction toward the... [Pg.61]

The chemistry of indium metal is the subject of current investigation, especially since the reactions induced by it can be performed in aqueous solution.15 The selective reductions of ethyl 4-nitrobenzoate (entry 1), 2-nitrobenzyl alcohol (entry 2), l-bromo-4-nitrobenzene (entry 3), 4-nitrocinnamyl alcohol (entry 4), 4-nitrobenzonitrile (entry 5), 4-nitrobenzamide (entry 6), 4-nitroanisole (entry 7), and 2-nitrofluorenone (entry 8) with indium metal in the presence of ammonium chloride using aqueous ethanol were performed and the corresponding amines were produced in good yield. These results indicate a useful selectivity in the reduction procedure. For example, ester, nitrile, bromo, amide, benzylic ketone, benzylic alcohol, aromatic ether, and unsaturated bonds remained unaffected during this transformation. Many of the previous methods produce a mixture of compounds. Other metals like zinc, tin, and iron usually require acid-catalysts for the activation process, with resultant problems of waste disposal. [Pg.100]

The chemical diversity of carboxylic acid esters (R-CO-O-R ) originates in both moieties, i.e., the acyl group (R-CO-) and the alkoxy or aryloxy group (-OR7). Thus, the acyl group can be made up of aliphatic or aromatic carboxylic acids, carbamic acids, or carbonic acids, and the -OR7 moiety may be derived from an alcohol, an enol, or a phenol. When a thiol is involved, a thioester R-CO-S-R7 is formed. The model substrates to be discussed in Sect. 7.3 will, thus, be classified according to the chemical nature of the -OR7 (or -SR7) moiety, i.e., the alcohol, phenol, or thiol that is the first product to be released during the hydrolase-catalyzed reaction (see Chapt. 3). Diesters represent substrates of special interest and will be presented separately. [Pg.383]


See other pages where Alcohols reactions during aromatization is mentioned: [Pg.29]    [Pg.23]    [Pg.83]    [Pg.244]    [Pg.352]    [Pg.146]    [Pg.379]    [Pg.1539]    [Pg.339]    [Pg.245]    [Pg.652]    [Pg.182]    [Pg.529]    [Pg.289]    [Pg.49]    [Pg.221]    [Pg.64]    [Pg.313]    [Pg.529]    [Pg.75]    [Pg.95]    [Pg.489]    [Pg.585]    [Pg.380]    [Pg.28]    [Pg.108]    [Pg.71]    [Pg.283]    [Pg.14]    [Pg.129]    [Pg.153]    [Pg.167]    [Pg.246]    [Pg.161]    [Pg.523]    [Pg.576]    [Pg.289]    [Pg.576]    [Pg.490]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



Alcohol aromatics

Aromatic alcohols

© 2024 chempedia.info