Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols chiral phosphine catalyst

To a much smaller extent non-enzymic processes have also been used to catalyse the stereoselective acylation of alcohols. For example, a simple tripeptide has been used, in conjunction with acetic anhydride, to convert rram-2-acctylaminocyclohexanol into the (K),(R)-Qster and recovered (S),(S)-alcohol[17]. In another, related, example a chiral amine, in the presence of molecular sieve and the appropriate acylating agent, has been used as a catalyst in the conversion of cyclohexane-1(S), 2(/ )-diol into 2(S)-benzoyloxy-cyclohexan-1 f / j-ol1 IS]. Such alternative methods have not been extensively explored, though reports by Fu, Miller, Vedejs and co-workers on enantioselective esterifications, for example of 1-phenylethanol and other substrates using /. vo-propyl anhydride and a chiral phosphine catalyst will undoubtedly attract more attention to this area1191. [Pg.9]

Scheme 3. Chiral phosphine catalyst for kinetic resolution of secondary alcohols... Scheme 3. Chiral phosphine catalyst for kinetic resolution of secondary alcohols...
The nature of the catalysts, especially those formed in situ from chlo-rorhodium(I) precursors, deserves some comment. The catalysts have been often written as Rh(P )2Cl(solvent), where P and (P )2 represent monodentate and bidentate chiral phosphines, respectively (10), but this almost certainly pertains for nonpolar media only. In polar media, including the mixed hydrocarbon/alcohol solvents usually employed,... [Pg.351]

BINAP system with excellent ee s. For example, 0// 0-bromoacetophenone can be converted into the corresponding chiral alcohol with 96% ee (Equation (72)). However, this type of substrate can be hydrogenated more effectively with the Ru/chiral phosphine/diamine system.279 Asymmetric hydrogenation of phenylthioketones has been realized with Ru catalysts. BINAP, MeO-BIPHEP,280 BDPP281 and Me-CnrPHOS,62c are efficient for this transformation (Table 17). [Pg.48]

The asymmetric synthesis of allenes via enantioselective hydrogenation of ketones with ruthenium(II) catalyst was reported by Malacria and co-workers (Scheme 4.11) [15, 16]. The ketone 46 was hydrogenated in the presence of iPrOH, KOH and 5 mol% of a chiral ruthenium catalyst, prepared from [(p-cymene) RuC12]2 and (S,S)-TsDPEN (2 equiv./Ru), to afford 47 in 75% yield with 95% ee. The alcohol 47 was converted into the corresponding chiral allene 48 (>95% ee) by the reaction of the corresponding mesylate with MeCu(CN)MgBr. A phosphine oxide derivative of the allenediyne 48 was proved to be a substrate for a cobalt-mediated [2 + 2+ 2] cycloaddition. [Pg.147]

A major advantage that nonenzymic chiral catalysts might have over enzymes, then, is their potential ability to accept substrates of different structures by contrast, an enzyme will select only its substrate from a mixture. Striking examples are the chiral phosphine-rhodium catalysts, which catalyze die hydrogenation of double bonds to produce chiral amino acids (10-12), and the titanium isopropoxide-tartrate complex of Sharpless (11,13,14), which catalyzes the epoxidation of numerous allylic alcohols. Since the enantiomeric purities of the products from these reactions are exceedingly high (>90%), we might conclude... [Pg.89]

Various acetylenes having functional groups such as halide, alcohol, ether, amine, alkene and nitrile, are tolerated in the reaction. An asymmetric (2+2+2) cydoaddition of a,03-diynes with alkyne was achieved by a [IrCl(cod)]2 catalyst combined with a chiral phosphine ligand such as MeDUPHOS and EtDUPHOS, and gave axially chiral aromatic compounds [20]. [Pg.253]

Vedejs and co-workers have explored the use of chiral phosphines as acyl transfer catalysts. The viability of this approach was proven when phosphine 1 was shown to catalyze the resolution of secondary alcohols with promising selectiv-ities (Scheme 2) [10,11]. [Pg.190]

Later, the chiral bicyclic phosphine catalyst 5a was also used for kinetic resolution of allylic alcohols with isobutyric anhydride [8, 9]. The best results were obtained for trisubstituted allylic alcohols - selectivity factors ranged from 32 to 82 at -40 °C. [Pg.325]

High enantiomeric excess in organocatalytic desymmetrization of meso-diols using chiral phosphines as nucleophilic catalysts was achieved for the first time by Vedejs et al. (Scheme 13.21) [36a], In this approach selectivity factors up to 5.5 were achieved when the C2-symmetric phospholane 42a was employed (application of chiral phosphines in the kinetic resolution of racemic secondary alcohols is discussed in Section 12.1). A later study compared the performance of the phos-pholanes 42b-d with that of the phosphabicyclooctanes 43a-c in the desymmetrization of meso-hydrobenzoin (Scheme 13.21) [36b], Improved enantioselectivity was observed for phospholanes 42b-d (86% for 42c) but reactions were usually slow. Currently the bicyclic compound 43a seems to be the best compromise between catalyst accessibility, reactivity, and enantioselectivity - the monobenzoate of hydrobenzoin has been obtained with a yield of 97% and up to 94% ee [36b]. [Pg.368]

The first practical method, using C2-symmetric chiral phosphine 1 as catalyst, was disclosed in 1996 by Vedejs [39]. Employing (3-Cl-C6H4C0)20 (2.5 equiv.) as the acylating agent in the presence of phosphine 1 (16 mol%), various aryl alkyl sec-alcohols were surveyed and s-values of 12 to 15 were obtained for the optimal substrate 2,2-dimethyl-l-phenyl-l-propanol (Scheme 8.3). [Pg.291]

In 1996, Yamamoto and Yanagisawa reported the allylation reaction of aldehydes with allytributyltin in the presence of a chiral silver catalyst.2 They found that the combination of silver and a phosphine ligand accelerates the allylation reaction between aldehydes and allyltributyltin. After this discovery, they screened several chiral phosphine ligands and found that chiral silver-diphosphine catalysts can effect the reaction in an enantioselective fashion (Table 9.1).2 For example, when benz-aldehyde and allyltributyltin were mixed in the presence of 5 mol% of AgOTf and (S)-2,2 -bis(diphenylphosphino)-1,1 -binaphthyl (BINAP), the corresponding homoallyl alcohol was obtained with 96% ee and 88% yield (Table 9.1). Generally, the reaction with aromatic aldehydes afforded the corresponding homoallyl alcohols in excellent... [Pg.260]

The homogeneous chiral phosphine/DPEN-Ru catalyst can be immobilized by use of polymer-bound phosphines such as polystyrene-anchored BINAP (APB-BINAP) [57, 98], Poly-Nap [99], and poly(BINOL-BINAP) [100], poly(BINAP) [101]. These complexes hydrogenate T-acetonaphthone and acetophenone with S/C of 1000-10 000 under 8 10 atm H2 to give the corresponding secondary alcohols in 84-98% e.e. The recovered complexes are repeatedly used without significant loss of reactivity and enantioselectivity. Immobilization allows the easy separation of catalyst from reaction mixture, recovery, and reuse. These advantages attract much attention in combinatorial synthesis. [Pg.16]

Asymmetric lactonization of prochiral diols has been performed vsdth chiral phosphine complex catalysts (Ru2Cl4((-)-DIOP)3 and [RuCl((S)-BINAP)(QH6)]Cl [17, 18]. Kinetic resolution of racemic secondary alcohol was also carried out with chiral ruthenium complexes 7 and 8 in the presence of a hydrogen acceptor, and optically active secondary alcohols were obtained with >99% e.e. (Eqs. 3.7 and 3.8) [19, 20]. [Pg.56]

Hydrosilylation of acetophenone to give silyl ether (M R = Me) can also be achieved using copper(I) complexes with the chiral phosphine ligands (-)-DIOP (87) or (+)-NORPHOS (88). The enantioselectiv-ity is rather low, but a nonphosphine auxiliary, PYTHIA (89) with a Rh(COD)Ch catalyst using neat diphenylsilane reduces aryl ketones to (R)-l-phenylethyl alcohol silyl ethers in high yield and with high enantiomeric excess (Scheme 18). " ... [Pg.174]

In the same way, Vedejs et al. [15] have explored the catalytic use of chiral phosphines in the enantioselective acylation of alcohols by the anhydrides. Moderate to good enantioselectivities were obtained using chiral phosphine 1 a as catalyst in the benzoylation of 2 a. In this case, the monobenzoate 3 a was obtained in 68% ee and 84% conversion. [Pg.80]

Keywords Asymmetric hydrogenation. Asymmetric transfer hydrogenation, BINAP, Chiral alcohols, Chiral amines. Chiral phosphines. Functionalized ketones. Homogeneous catalysts. Simple ketones... [Pg.202]


See other pages where Alcohols chiral phosphine catalyst is mentioned: [Pg.238]    [Pg.712]    [Pg.712]    [Pg.76]    [Pg.380]    [Pg.171]    [Pg.246]    [Pg.174]    [Pg.281]    [Pg.342]    [Pg.353]    [Pg.81]    [Pg.275]    [Pg.342]    [Pg.321]    [Pg.190]    [Pg.71]    [Pg.140]    [Pg.39]    [Pg.337]    [Pg.491]    [Pg.103]    [Pg.114]    [Pg.87]    [Pg.97]    [Pg.137]    [Pg.116]    [Pg.276]    [Pg.235]    [Pg.387]    [Pg.116]    [Pg.190]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Alcohols chiral

Chiral catalysts

Chiral phosphine catalysts

Phosphines chiral

Phosphines chirality

© 2024 chempedia.info