Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols aziridine

Amines oxiranes amino alcohols aziridines diamines. [Pg.618]

Potassium hydroxide/alcohol Aziridine ring rearrangement with N-decarbalkoxylation... [Pg.19]

Reaction with Oxygen Nucleophiles. In the presence of strong acids, eg, H2SO4, HBF, or BF, aziridines react with alcohols to form P-amino ethers (93) ... [Pg.4]

The commonest of these for oxirane opening are amines and azide ion [amide ions promote isomerization to allylic alcohols (Section 5.05.3.2.2)]. Reaction with azide can be used in a sequence for converting oxiranes into aziridines (Scheme 49) and this has been employed in the synthesis of the heteroannulenes (57) and (58) (80CB3127, 79AG(E)962). [Pg.111]

The Hoch-Campbell reaction of a-hydroxy ketoximes do not alter the course of the reaction although deprotonation probably took place concurrently for both the alcohol and the oxime. Treatment of oxime 40 afforded aziridine 42 in 30%, presumably via the intermediacy of azirine 41. a-Keto ketoximes would behave similarly to the a-hydroxy ketoximes in the Hoch-Campbell reaction after addition of the first equivalent of the Grignard reagent to the ketone. Therefore, the reaction between a-keto ketoxime 43 and phenylmagnesium bromide gave aziridine 45 in 41% yield, presumably via the intermediacy of azirine 44. [Pg.26]

The Wenker aziridine synthesis entails the treatment of a P-amino alcohol 1 with sulfuric acid to give P-aminoethyl sulfate ester 2 which is subsequently treated with base to afford aziridine 3. Before the discovery of the Mitsunobu reaction, wbicb transforms an amino alcohol into an aziridine in one step under very mild conditions, the Wenker reaction was one of the most convenient methods for aziridine synthesis. However, due to the involvement of strong acid and then strong base, its utility has been limited to substrates without labile functionalities. [Pg.63]

Mesylates and tosylates may be used as variants of the 0-sulfate ester. For instance, 55% of aziridine 7 was obtained from base-mediated cyclization of amino mesylate 6. In comparison, the classic Wenker protocol only gave 3% of 7. In another instance, A-tosyl amino alcohol 8 was tosylated to give 9, which was transformed to aziridine 10 in 64% yield, along with 29% of the P-elimination product due to the presence of the ester moiety. Likewise, aziridine 12 was assembled from tosylate 11 in two steps and 60% yield. ... [Pg.64]

Due to the abundance of epoxides, they are ideal precursors for the preparation of P-amino alcohols. In one case, ring-opening of 2-methyl-oxirane (18) with methylamine resulted in l-methylamino-propan-2-ol (19), which was transformed to 1,2-dimethyl-aziridine (20) in 30-35% yield using the Wenker protocol. Interestingly, l-amino-3-buten-2-ol sulfate ester (23) was prepared from l-amino-3-buten-2-ol (22, a product of ammonia ring-opening of vinyl epoxide 21) and chlorosulfonic acid. Treatment of sulfate ester 23 with NaOH then led to aziridine 24. ... [Pg.65]

A cold mixture of sulfuric acid (98%, 4 g), and water (4 mL) was added to an amino-alcohol 25 (40 mmol) in water (2.4 mL) at 0-5°C. The mixture was heated to 120°C and then water was carefully distilled off in vacuo. The solid sulfate residue was treated with 6.2 M potassium hydroxide, and steam-distilled. The distillate was saturated with potassium hydroxide pellets and the upper organic layer, which separated, was fractionally distilled from potassium hydroxide through a short column to give a colorless oil aziridine 26 in 96% yield. [Pg.66]

In addition, an Organic Synthesis procedure of preparing aziridine from P-amino alcohol exists. ... [Pg.66]

The action of nitrous acid on the benzodiazepine A -oxide 38 gives the nitrosoamino derivative 39,234 which reacts with alcohols, ethanethiol and various amino compounds, such as hydrazines and guanidine, by replacement of the methyl(nitroso)amino group.235 Reaction with aziridine affords the aziridinyl compound 40f or the 2-(aziridin-l-yl)ethylainino derivative 40g, depending on the conditions. [Pg.411]

Amino alcohols are also good substrates for aziridination under Mitsunobu conditions. The rfs-1,4-amino alcohols 48, obtained by reductive cleavage of the nitrogen-oxygen bonds of the hetero Diels-Alder adducts 47, underwent syn-SN2 -type displacement on treatment with PPh3 and DEAD to give cyclic vinylaziridines 49 (Scheme 2.15) [27]. [Pg.44]

Ring-opening of diastereomerically pure vinylaziridine 131, prepared by azir-idination of butadiene with 3-acetoxyaminoquinazolinone 130 [52], yielded acetate 132 with inversion of configuration, together with amino alcohol 133 with retention (Scheme 2.34) [53]. The formation of 133 can be explained by assuming participation by the quinazolinone carbonyl oxygen, which produces an intramolecular reaction with the aziridine carbon with retention of configuration. [Pg.53]

As described in Section 2.3.2, vinylaziridines are versatile intermediates for the stereoselective synthesis of (E)-alkene dipeptide isosteres. One of the simplest methods for the synthesis of alkene isosteres such as 242 and 243 via aziridine derivatives of type 240 and 241 (Scheme 2.59) involves the use of chiral anti- and syn-amino alcohols 238 and 239, synthesizable in turn from various chiral amino aldehydes 237. However, when a chiral N-protected amino aldehyde derived from a natural ot-amino acid is treated with an organometallic reagent such as vinylmag-nesium bromide, a mixture of anti- and syn-amino alcohols 238 and 239 is always obtained. Highly stereoselective syntheses of either anti- or syn-amino alcohols 238 or 239, and hence 2,3-trans- or 2,3-as-3-alkyl-2-vinylaziridines 240 or 241, from readily available amino aldehydes 237 had thus hitherto been difficult. Ibuka and coworkers overcame this difficulty by developing an extremely useful epimerization of vinylaziridines. Palladium(0)-catalyzed reactions of 2,3-trons-2-vinylaziri-dines 240 afforded the thermodynamically more stable 2,3-cis isomers 241 predominantly over 240 (241 240 >94 6) through 7i-allylpalladium intermediates, in accordance with ab initio calculations [29]. This epimerization allowed a highly stereoselective synthesis of (E) -alkene dipeptide isosteres 243 with the desired L,L-... [Pg.64]

Ring-opening of aziridine-2-carboxylates with alcohols has been reported to give (3-alkoxy-a-amino esters [16, 102]. Treatment of as-aziridine 127 (Scheme 3.45) with alcohol in the presence of a catalytic amount of boron trifluoride etherate afforded P-alkoxy-ot-amino esters 128 in 57-100% yields [16,102a], The reaction is both regio- and stereoselective, affording 128 as the only product. [Pg.91]

S,3S)-(+)-Aziridine-2,3-dicarboxylic acid (234 Scheme 3.86), an example of a naturally occurring aziridinecarboxylic acid, is a metabolite of Streptomyces MD398-A1. This aziridine was prepared by treatment of diethyl (2i ,3K)-(-)-oxir-ane-2,3-dicarboxylate (231) with trimethylsilyl azide in EtOH/DMF to produced azido alcohol 232 [137], and treatment of this alcohol with triphenylphosphine afforded the aziridine dicarboxylate 233 in 71 % yield. Hydrolysis of 233 afforded the natural product 234 in 69% yield. [Pg.105]

Aziridine lactone 235 (Scheme 3.87) underwent ring-opening with allyl alcohol to give a 53% yield of a-amino lactone 236, which was successfully transformed to the unnatural enantiomer of polyoxamic acid (—)-237 [32],... [Pg.105]

Cyciization processes involve ring-closure of amino alcohols (Scheme 4.3) or equivalents, and as the aziridine precursors are often available as single stereoisomers, the method is an attractive one if the aziridine target is a key synthetic intermediate. [Pg.118]

The metal catalyst is not absolutely required for the aziridination reaction, and other positive nitrogen sources may also be used. After some years of optimization of the reactions of alkenes with positive nitrogen sources in the presence of bromine equivalents, Sharpless et al. reported the utility of chloramine-T in alkene aziridinations [24]. Electron-rich or electron-neutral alkenes react with the anhydrous chloramines and phenyltrimethylammonium tribromide in acetonitrile at ambient temperature, with allylic alcohols being particularly good substrates for the reaction (Schemes 4.18 and 4.19). [Pg.125]

The (3-elimination of epoxides to allylic alcohols on treatment with strong base is a well studied reaction [la]. Metalated epoxides can also rearrange to allylic alcohols via (3-C-H insertion, but this is not a synthetically useful process since it is usually accompanied by competing a-C-H insertion, resulting in ketone enolates. In contrast, aziridine 277 gave allylic amine 279 on treatment with s-BuLi/(-)-spar-teine (Scheme 5.71) [97]. By analogy with what is known about reactions of epoxides with organolithiums, this presumably proceeds via the a-metalated aziridine 278 [101]. [Pg.178]

Table 12.4 Bromine-catalyzed aziridination of allylic alcohols with anhydrous TsNCINa. a]... Table 12.4 Bromine-catalyzed aziridination of allylic alcohols with anhydrous TsNCINa. a]...

See other pages where Alcohols aziridine is mentioned: [Pg.36]    [Pg.430]    [Pg.486]    [Pg.36]    [Pg.551]    [Pg.243]    [Pg.36]    [Pg.107]    [Pg.36]    [Pg.430]    [Pg.486]    [Pg.36]    [Pg.551]    [Pg.243]    [Pg.36]    [Pg.107]    [Pg.81]    [Pg.81]    [Pg.84]    [Pg.244]    [Pg.22]    [Pg.23]    [Pg.25]    [Pg.60]    [Pg.80]    [Pg.45]    [Pg.47]    [Pg.53]    [Pg.68]    [Pg.69]    [Pg.145]    [Pg.266]    [Pg.434]    [Pg.435]    [Pg.452]    [Pg.455]    [Pg.456]    [Pg.459]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



Alcohols, allylic with aziridines

Alcohols, allylic with aziridines epoxidation

Alcohols, allylic with aziridines epoxides

Alcohols, allylic with aziridines esters

Alcohols, allylic with aziridines reaction

Alcohols, allylic with aziridines reagents

Alcohols, allylic with aziridines rearrangement

Alcohols, amino chiral aziridines from

Allylic alcohols aziridination

Azide-alcohols, cyclization aziridines

Aziridine, preparation from azido-alcohols

Aziridines from amino alcohols

Aziridines from azido alcohols

© 2024 chempedia.info