Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bonding advantages

Nonfinance companies sell bonds mainly as alternatives to bank finance. But there are also other advantages. Bond issues can be of longer maturities than bank loans, and serve to diversify a company s investor base. [Pg.191]

A related advantage of studying crystalline matter is that one can have synnnetry-related operations that greatly expedite the discussion of a chemical bond. For example, in an elemental crystal of diamond, all the chemical bonds are equivalent. There are no tenninating bonds and the characterization of one bond is sufficient to understand die entire system. If one were to know the binding energy or polarizability associated with one bond, then properties of the diamond crystal associated with all the bonds could be extracted. In contrast, molecular systems often contain different bonds and always have atoms at the boundary between the molecule and the vacuum. [Pg.86]

For this reason, there has been much work on empirical potentials suitable for use on a wide range of systems. These take a sensible functional form with parameters fitted to reproduce available data. Many different potentials, known as molecular mechanics (MM) potentials, have been developed for ground-state organic and biochemical systems [58-60], They have the advantages of simplicity, and are transferable between systems, but do suffer firom inaccuracies and rigidity—no reactions are possible. Schemes have been developed to correct for these deficiencies. The empirical valence bond (EVB) method of Warshel [61,62], and the molecular mechanics-valence bond (MMVB) of Bemardi et al. [63,64] try to extend MM to include excited-state effects and reactions. The MMVB Hamiltonian is parameterized against CASSCF calculations, and is thus particularly suited to photochemistry. [Pg.254]

Many problems in force field investigations arise from the calculation of Coulomb interactions with fixed charges, thereby neglecting possible mutual polarization. With that obvious drawback in mind, Ulrich Sternberg developed the COSMOS (Computer Simulation of Molecular Structures) force field [30], which extends a classical molecular mechanics force field by serai-empirical charge calculation based on bond polarization theory [31, 32]. This approach has the advantage that the atomic charges depend on the three-dimensional structure of the molecule. Parts of the functional form of COSMOS were taken from the PIMM force field of Lindner et al., which combines self-consistent field theory for r-orbitals ( nr-SCF) with molecular mechanics [33, 34]. [Pg.351]

Three-body and higher terms are sometimes incorporated into solid-state potentials. The Axilrod-Teller term is the most obvious way to achieve this. For systems such as the alkali halides this makes a small contribution to the total energy. Other approaches involve the use of terms equivalent to the harmonic angle-bending terms in valence force fields these have the advantage of simplicity but, as we have already discussed, are only really appropriate for small deviations from the equilibrium bond angle. Nevertheless, it can make a significant difference to the quality of the results in some cases. [Pg.257]

A force field that can produce vibrational spectra has a second advantage in that the Ay// calculations can be put on a much more satisfactory theoretical base by calculating an enthalpy of formation at 0 K as in ab initio procedures and then adding various thermal energies by more r igorous means than simply lumping them in with empirical bond enthalpy contributions to Ay//-. The stronger the theoretical base, the less likely is an unwelcome surprise in the output. [Pg.162]

Here, Dg is the bond dissoeiation energy, rg is the equilibrium bond length, and a is a eonstant that eharaeterizes the steepness of the potential and determines the vibrational frequeneies. The advantage of using the Morse potential to improve upon harmonie-oseillator-level predietions is that its energy levels and wavefunetions are also known exaetly. The energies are given in terms of the parameters of the potential as follows ... [Pg.37]

Each of these tools has advantages and limitations. Ab initio methods involve intensive computation and therefore tend to be limited, for practical reasons of computer time, to smaller atoms, molecules, radicals, and ions. Their CPU time needs usually vary with basis set size (M) as at least M correlated methods require time proportional to at least M because they involve transformation of the atomic-orbital-based two-electron integrals to the molecular orbital basis. As computers continue to advance in power and memory size, and as theoretical methods and algorithms continue to improve, ab initio techniques will be applied to larger and more complex species. When dealing with systems in which qualitatively new electronic environments and/or new bonding types arise, or excited electronic states that are unusual, ab initio methods are essential. Semi-empirical or empirical methods would be of little use on systems whose electronic properties have not been included in the data base used to construct the parameters of such models. [Pg.519]

The advantages of this route are that it is very short and that the double bond must go where we want it. Otherwise it is very like the route in frame 40 and actually uses the same starting materials. How might you make TM 41 ... [Pg.15]

A completely different, important type of synthesis, which was developed more recently, takes advantage of the electrophilicity of nitrogen-containing 1,3-dipolar compounds rather than the nucleophilicity of amines or enamines. Such compounds add to multiple bonds, e.g. C—C, C C, C—O, in a [2 + 3 -cycioaddition to form five-membered heterocycles. [Pg.152]


See other pages where Bonding advantages is mentioned: [Pg.366]    [Pg.714]    [Pg.1002]    [Pg.395]    [Pg.86]    [Pg.1325]    [Pg.2343]    [Pg.2365]    [Pg.2702]    [Pg.2807]    [Pg.2821]    [Pg.2993]    [Pg.503]    [Pg.512]    [Pg.239]    [Pg.333]    [Pg.72]    [Pg.133]    [Pg.139]    [Pg.573]    [Pg.117]    [Pg.239]    [Pg.254]    [Pg.256]    [Pg.407]    [Pg.464]    [Pg.483]    [Pg.661]    [Pg.118]    [Pg.886]    [Pg.888]    [Pg.1149]    [Pg.158]    [Pg.32]    [Pg.69]    [Pg.95]    [Pg.154]    [Pg.240]    [Pg.110]    [Pg.5]   


SEARCH



Adhesive bond advantages

Adhesive bonding advantages

Advantages and Disadvantages of Adhesive Bonding

Advantages and Disadvantages of Bonding

Bonded phases advantages

Bonded-phase chromatography advantages

Convertible bonds yield advantage

Empirical valence bond advantages

Non Bond Advantages of Waterborne Bonding Systems

© 2024 chempedia.info