Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption hematite

FIG. 20-37 The variation of adsorption density, oil-droplet contact angle, and oil-extraction recovery of hematite as a function of pH. To convert gram-moles per square centimeter to pound-moles per square foot, multiply by 2.048. [From Raghavan and Fuerstenau, Am. Inst. Ghem. Eng. Symp. Sen, 71(150), 59 (1975).]... [Pg.29]

Pigna M, Colombo C, Violante A (2003) Competitive sorption of arsenate and phosphate on synthetic hematites (in Italian). Proceedings XXI Congress of Societa Italiana Chimica Agraria SICA (Ancona), pp 70-76 Quirk JP (1955) Significance of surface area calculated from water vapour sorption isotherms by use of the B. E. T. equation. Soil Sci 80 423-430 Rancourt DG, Fortin D, Pichler T, Lamarche G (2001) Mineralogical characterization of a natural As-rich hydrous ferric oxide coprecipitate formed by mining hydrothermal fluids and seawater. Am Mineral 86 834-851 Raven K, Jain A, Loeppert, RH (1998) Arsenite and arsenate adsorption on ferrihydrite kinetics, equilibrium, and adsorption envelopes. Environ Sci Technol 32 344-349... [Pg.67]

Fig. 6. Plateau-values, I"P1 /mg m 2, of adsorption isotherms of lysozyme (LSZ), ribonuclease (RNase), a -lactalbumin (aLA), calcium-depleted (X -lactalbumin (aLA(-Ca )) and bovine serum albumin (BSA) on hydrophobic polystyrene (PS) and hydrophilic hematite (a — Fe203) and silica (Si02) surfaces. An indication of the charge density of the surface is given by the zeta-potential, C, and of the proteins by + and signs. Ionic strength 0.05 M T = 25°C. (Derived from Currie et al. 2003). Fig. 6. Plateau-values, I"P1 /mg m 2, of adsorption isotherms of lysozyme (LSZ), ribonuclease (RNase), a -lactalbumin (aLA), calcium-depleted (X -lactalbumin (aLA(-Ca )) and bovine serum albumin (BSA) on hydrophobic polystyrene (PS) and hydrophilic hematite (a — Fe203) and silica (Si02) surfaces. An indication of the charge density of the surface is given by the zeta-potential, C, and of the proteins by + and signs. Ionic strength 0.05 M T = 25°C. (Derived from Currie et al. 2003).
Certain acids with hydroxylic and carboxylic groups have been shown (Schwert-mann and Cornell, 1991) to induce in Fe(HI) solutions the formation of hematite because these acids may act as templates for the nucleation of hematite. These examples illustrate that a complete understanding and quantitative description of the rate of heterogeneous nucleation will have to include surface complexation and other adsorption processes. [Pg.228]

Calorimetric investigations of hydrous metal oxide suspensions are more scarce. A study of starch adsorption on hematite revealed that the adsorption process became less exothermic as surface coverage increased (25). This was attributed to a rearrangement of starch molecules to less favorable configurations. [Pg.144]

In Situ Mossbauer Measurement on Hematite/Divalent Co-57. The adsorption behavior of cobaltous ions on hematite surfaces was essentially the same as that on silica reported by James and Healy (12). Appreciable adsorption begins at about pH 4 followed by an abrupt increase in adsorption between pH 6 and 8. Beyond pH 9, adsorption is practically complete. Emission Mossbauer spectra of Fe-57 arising from the divalent Co-57 ions at the interface between hematite particles and the 0.1 mol/dm3 NaCl solutions of different pH at room temperature are shown in Figure 3 The emission spectra show a marked dependence on the pH of the aqueous phase. No emission lines ascribable to paramagnetic iron species are recognized in... [Pg.406]

Adsorption of Pentavalent Sb Ions on Hematite. So far as we know, there are no experimental data on the adsorption equilibrium of dilute pentavalent Sb ions on metal oxides. Therefore, the pH dependence of the adsorption of pentavalent Sb ions on hematite was measured. Carrier-free pentavalent Sb-119 ions were adsorbed on 30 mg of hematite (prefired at 900°C for 2 hours) from 10 cm3 of 0.25 mol/dm3 LiCl solutions at 24 1°C. The amount of antimony employed in each run is estimated to be about 50 ng. The adsorption proceeds with a measurable rate and attains an apparent equilibrium after shaking for several hours. The reaction is second order with respect to the concentration of pentavalent Sb ions in the solution (13) The values given in Figure 4 are those obtained after 22 hours equilibration. As seen in Figure 4, strong adsorption of pentavalent Sb ions is observed below pH 7, while the percent adsorbed diminishes abruptly above that. Most of the Sb ions adsorbed on hematite from solutions of pH 2-5 are not desorbed by subsequent adjustment to alkaline conditions. Results on desorption of Sb ions pre-adsorbed at pH 4 are shown in Figure 4. [Pg.409]

Figure 4. pH dependence of the adsorption and desorption of carrier-free pentavalent Sb—119 on hematite at room temperature (30 mg of hematite prefired at 900°C in 10 cm3 of 0.25 mol/dm3 LiCl solutions). Desorption was measured on pentavalent Sb-119 pre-adsorbed at pH 4. Shaking time was 22 hours for the adsorption and was 5 days for the desorption. [Pg.410]

In order to study the effect of the amount of pentavalent Sb ions on adsorption state, in situ emission Mossbauer measurement was made on Sb-119 adsorbed on hematite with non-radioactive pentavalent... [Pg.411]

Effects of Pentavalent Sb Ions on the Adsorption of Divalent Co-57 on Hematite. Benjamin and Bloom reported that arsenate ions enhance the adsorption of cobaltous ions on amorphous iron oxyhydroxide (J 6). Similarly, when divalent Co-57 ions were adsorbed on hematite together with pentavalent Sb ions, an increase of adsorption in the weakly acidic region was observed. For example, when 30 mg of hematite was shaken with 10 cm3 of 0.1 mol/dm3 KC1 solution at pH 5.5 containing carrier-free Co-57 and about 1 mg of pentavalent Sb ions, 95 % of Co-57 and about 30 % of Sb ions were adsorbed. The emission spectra of the divalent Co-57.ions adsorbed under these conditions are shown in Figure 8 together with the results obtained under different conditions. As seen in Figure 8, the spectra of divalent Co-57 co-adsorbed with pentavalent Sb ions are much different from those of Co-57 adsorbed alone (Figure 3). These observations show a marked effect of the.co-adsorbed pentavalent Sb ions on the chemical structure of adsorbed Co-57. [Pg.414]

Effects of Pentavalent Sb on the Adsorption of Divalent Co-57. The emission Mossbauer spectra of divalent Co-57 adsorbed on hematite with pentavalent Sb ions (Figure 8) are complex and we have not yet succeeded in their analysis. It is certain, however, from the spectra that trivalent Fe-57 ions produced by the EC decay of Co-57 are interacting magnetically with the ferric ions of the substrate. This means that the divalent Co-57 are not adsorbed on the pentavalent Sb ions, but on hematite directly. The [Sb(OH)g]- anions are considered to facilitate direct adsorption of divalent Co-57 ions on the positively charged surfaces of hematite in the acidic region. [Pg.423]

The Effect of Preadsorbed Polymers on Adsorption of Sodium Dodecylsulfonate on Hematite... [Pg.291]

The presence of pre-adsorbed polyacrylic acid significantly reduces the adsorption of sodium dodecylsulfonate on hematite from dilute acidic solutions. Nonionic polyacrylamide was found to have a much lesser effect on the adsorption of sulfonate. The isotherm for sulfonate adsorption in absence of polymer on positively charged hematite exhibits the typical three regions characteristic of physical adsorption in aqueous surfactant systems. Adsorption behavior of the sulfonate and polymer is related to electrokinetic potentials in this system. Contact angle measurements on a hematite disk in sulfonate solutions revealed that pre-adsorption of polymer resulted in reduced surface hydrophobicity. [Pg.291]

Adsorption Methods. Five grams of hematite were first conditioned in 0.001 M NaCl at pH 4.1. After the SDS had been added to the slurry and the pH adjusted as required, the samples were conditioned on a rotating shaker for two hours. The solutions were then centrifuged, and the supernatant liquid analyzed for its SDS content. The amount of SDS adsorbed was calculated as the difference between the initial amount added and the residual amount measured. Experimental results showed that two hours was sufficient time for equilibrium to be reached. Somasundaran ( ) observed similar equilibrium adsorption times for sulfonate adsorption on aluminum oxide. [Pg.292]

Figure 3. Equilibriimi adsorption densities of sodium dodecylsul-fonate on hematite at pH 4.1 and 0.001 M NaCl in the presence and absence of pre-adsorbed polyacrylic acid. Figure 3. Equilibriimi adsorption densities of sodium dodecylsul-fonate on hematite at pH 4.1 and 0.001 M NaCl in the presence and absence of pre-adsorbed polyacrylic acid.
Figure 4. Equilibrium adsorption densities of polyacrylic acid on hematite at various pH values. Reproduced with permission from Ref. 22. Copyright 1983, Colloids and Surfaces. Figure 4. Equilibrium adsorption densities of polyacrylic acid on hematite at various pH values. Reproduced with permission from Ref. 22. Copyright 1983, Colloids and Surfaces.
For the addition of 0.11 mg PAA per square meter hematite, the mobility decreased at SDS adsorption densities less than 0.3 micromoles per square meter but remained positive in value. [Pg.300]

Above this adsorption density, negative mobilities were recorded. At PAA additions of 0.22 and 0.44 mg per square meter hematite. [Pg.300]

At equilibrium surfactant concentrations of less than 0.0003 M SDS where the hematite surface is still positively charged, adsorption of surfactant follows its normal pattern due to the electrostatic forces which provide the driving force for adsorption. Sufficient effective surface area must be available for this level of SDS adsorption density. As surfactant adsorption... [Pg.302]

Adsorption and electrokinetic effects of amino acids, solid-aqueous interface, 311-26 Adsorption density, equilibrium PAA at various pH values, 299f PAA on hematite, 304f SDS with and without polymer, 298f,303f... [Pg.342]


See other pages where Adsorption hematite is mentioned: [Pg.538]    [Pg.573]    [Pg.67]    [Pg.2]    [Pg.6]    [Pg.184]    [Pg.262]    [Pg.11]    [Pg.409]    [Pg.411]    [Pg.419]    [Pg.420]    [Pg.349]    [Pg.296]    [Pg.296]    [Pg.300]    [Pg.300]    [Pg.302]    [Pg.305]    [Pg.342]   
See also in sourсe #XX -- [ Pg.409 ]

See also in sourсe #XX -- [ Pg.70 ]




SEARCH



Hematite

Hematite metal adsorption

Hematite phosphate adsorption

Hematite, arsenite adsorption

Surface charge, hematite, effect adsorption

© 2024 chempedia.info