Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption/desorption pores

This principle is illustrated in Figure 10 (45). Water adsorption at low pressures is markedly reduced on a poly(vinyhdene chloride)-based activated carbon after removal of surface oxygenated groups by degassing at 1000°C. Following this treatment, water adsorption is dominated by capillary condensation in mesopores, and the si2e of the adsorption-desorption hysteresis loop increases, because the pore volume previously occupied by water at the lower pressures now remains empty until the water pressure reaches pressures 0.3 to 0.4 times the vapor pressure) at which capillary condensation can occur. [Pg.277]

Figure 1.5 shows the cumulative pore volume curve for 5-/rm monosized porous PS-DVB particles with 50, 60, and 70% porosity. The curves were drawn by overlapping the measurements from nitrogen adsorption-desorption and mercury intrusion. A scanning electron micrograph of 5-/rm monosized particles with 50% porosity is shown in Fig. 1.6 (87). [Pg.24]

The competitive adsorption isotherms were determined experimentally for the separation of chiral epoxide enantiomers at 25 °C by the adsorption-desorption method [37]. A mass balance allows the knowledge of the concentration of each component retained in the particle, q, in equilibrium with the feed concentration, < In fact includes both the adsorbed phase concentration and the concentration in the fluid inside pores. This overall retained concentration is used to be consistent with the models presented for the SMB simulations based on homogeneous particles. The bed porosity was taken as = 0.4 since the total porosity was measured as Ej = 0.67 and the particle porosity of microcrystalline cellulose triacetate is p = 0.45 [38]. This procedure provides one point of the adsorption isotherm for each component (Cp q. The determination of the complete isotherm will require a set of experiments using different feed concentrations. To support the measured isotherms, a dynamic method of frontal chromatography is implemented based on the analysis of the response curves to a step change in feed concentration (adsorption) followed by the desorption of the column with pure eluent. It is well known that often the selectivity factor decreases with the increase of the concentration of chiral species and therefore the linear -i- Langmuir competitive isotherm was used ... [Pg.244]

Models of chemical reactions of trace pollutants in groundwater must be based on experimental analysis of the kinetics of possible pollutant interactions with earth materials, much the same as smog chamber studies considered atmospheric photochemistry. Fundamental research could determine the surface chemistry of soil components and processes such as adsorption and desorption, pore diffusion, and biodegradation of contaminants. Hydrodynamic pollutant transport models should be upgraded to take into account chemical reactions at surfaces. [Pg.140]

N2 adsorption-desorption isotherms revealed that MCs had hi surface area (>1200 m /g) and large pore volume (>1.0 cm /g). From SAXS patterns of the prepared materials, it was confirmed that pores of SBA-15 and CMK-3 retained highly ordered 2-dimensional hexagonal type arrangement [5], while MCM-48 had 3-dimensional cubic type pore structure. It should be noted that a new scattering peak of (110) appeared in the CMK-1 after the removal of MCM-48 template. Furthermore, the pore size of CMK-1 and the wall thickness of MCM-48 were found to be 2.4 nm and 1.3 nm, respectively. This result demonstrates that a systematic transformation of pore structure occurred during the replication process from MCM-48 to CMK-1 [6]. [Pg.610]

In order to elucidate the pore structure of Csx, the adsorption-desorption isotherm of N2 was first measured. Tsrical results are given in Figure 4. H3PW12O40 exhibited a Type II isotherm (according to the lUPAC classification... [Pg.586]

Fig.3.1.9 (a) The adsorption-desorption isotherm (circles, right axis) and the self-diffusion coefficients D (triangles, left axis) for cyclohexane in porous silicon with 3.6-nm pore diameter as a function of the relative vapor pressure z = P/PS1 where Ps is the saturated vapor pressure, (b) The self-diffusion coefficients D for acetone (squares) and cyclohexane (triangles) as a function of the concentration 0 of molecules in pores measured on the adsorption (open symbols) and the desorption (filled symbols) branches. [Pg.244]

The reference Pt-Ba/y-Al203 (1/20/100 w/w) catalyst shows surface area values in the range 140-160 m2/g, a pore volume of 0.7-0.8cc/g and an average pore radius close to 100 A (measured by N2 adsorption-desorption at 77 K by using a Micromeritics TriStar 3000 instrument). Slight differences in the characterization data are associated to various batches of the ternary catalyst [24,25],... [Pg.178]

Specific surface area (SSA), total pore volume and average pore diameter were measured by N2 adsorption-desorption isotherms at 77K using Micromeritics ASAP 2020. The pore size was calculated on the adsorption branch of the isotherms using Barrett-Joyner-Helenda (BJH) method and the SSA was calculated using the Brunauer-Emmett-Teller (BET) method. [Pg.13]

Nitrogen adsorption/desorption isotherms on Zeolite and V-Mo-zeolite are very similar and close to a type I characteristic of microporous materials, although the V-Mo-catalysts show small hysterisis loop at higher partial pressures, which reveals some intergranular mesoporosity. Table 1 shows that BET surface area, microporous and porous volumes, decrease after the introduction of Molybdenum and vanadium in zeolite indicating a textural alteration probably because of pore blocking by vanadium or molybdenum species either dispersed in the channels or deposited at the outer surface of the zeolite. The effect is far less important for the catalysts issued from ZSM-5. [Pg.130]

Figure 2 shows us the N2 adsorption-desorption isotherm of Beta/montmorillonite composite. At low relative pressure a sharp adsorption of nitrogen indicates the existence of large amount of micropore. The hysteresis shown in figure 2 is ascribed to type H4 which usually can be observed on layered clay and other materials [2], It is obvious that part of the pore structure in montmorillonite is still preserved after calcination under high temperature and the following hydrothermal crystallization. [Pg.138]

The X-ray diffraction pattern of the spheres before the immersion in SBF shows the typical diffraction peak ascribable to the (100) reflection of the ordered mesophase with a dioo of 3.45 nm. Nitrogen adsorption-desorption isotherms are of type IV and pore size from DFT model results 2.4 nm (data not reported). [Pg.250]

N2 adsorption-desorption isotherms show instead occlusion of mesopores between 2 and 9 hours of immersion, possibly due to reaction of silica with SBF. This seems to vanish between 24 and 27 hours, only in the case of ibuprofen-loaded spheres. We suggest that in this latter case the entrapped molecules play a role in the temporary reopening of the pores. [Pg.252]

The parent zeolites, MOR and BEA, show reversible type-I adsorption/desorption isotherm with a steep rise at pipe, < 0.01, typical for microporous solid while the recrystallized exhibit rather sharp steps at pipe, 0.35, corresponding to the existence of uniform mesopores (typical for MCM-41 phase). According to BJH calculation, the size of the mesopores was about 3.0 nm. The contribution of micro- and mesopores in recrystallized materials was adjusted by variation of alkalinity during recrystallization procedure [2] (Table 1). The formation of mesopores resulted in significant increase of pore volumes of the samples upon recrystallization. [Pg.414]

Fast adsorption/desorption kinetics and relatively small (<10 kj/mol) adsorption enthalpies are observed for hydrogen adsorption on many porous materials, which indicates that physisorption on porous materials is suitable for fast recharging with hydrogen [81,82], The narrowest pores make the biggest contribution to hydrogen-adsorption capacity, whereas mesopores contribute to total pore volume, but little to hydrogen capacity, and are detrimental for the overall volumetric capacity. Hence, porous materials with very narrow pores or pore-size distributions are required for enhanced hydrogen capacity at low pressures. [Pg.431]

ADSORPTION-DESORPTION AND THERMAL TECHNIQUES 1.3.1 Surface Area and Pore Structure... [Pg.8]

For membranes with pore diameters smaller than 3.5 nm, the nitrogen adsorption/desorption method based on the widely used BET theory ean be employed. This measurement technique, however, is good only for pore diameters ranging from 1.5 nm to 100 nm ( = 0.1 micron). Typical data from this method are split into two portions adsorption and desorption. The nitrogen desorption curve is usually used to describe the pore size distribution and corresponds better to the mercury intrusion curve. Given in Figure... [Pg.75]


See other pages where Adsorption/desorption pores is mentioned: [Pg.504]    [Pg.504]    [Pg.296]    [Pg.619]    [Pg.403]    [Pg.266]    [Pg.298]    [Pg.786]    [Pg.229]    [Pg.813]    [Pg.83]    [Pg.68]    [Pg.117]    [Pg.126]    [Pg.129]    [Pg.139]    [Pg.338]    [Pg.295]    [Pg.395]    [Pg.317]    [Pg.278]    [Pg.8]    [Pg.9]    [Pg.89]    [Pg.374]    [Pg.31]    [Pg.42]    [Pg.57]    [Pg.75]    [Pg.77]    [Pg.119]    [Pg.466]   
See also in sourсe #XX -- [ Pg.298 ]




SEARCH



Adsorption desorption

Pores adsorption

© 2024 chempedia.info