Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemisorption adsorbate-substrate bonds

From the calculated adsorbate-substrate bond length a substantial covalent character of alkali bonding to transition metal surfaces is deduced in the low coverage limit. A spin-polarized calculation shows that the unpaired spin of the alkali atom is almost completely quenched upon chemisorption. [Pg.180]

Restructuring occurs in order to maximize the bonding and stability of the adsorbate-substrate complex. Thus it is driven by thermodynamic forces and is most likely to occur when the stronger adsorbate-substrate bonds that form compensate for the weakening of bonds between the substrate atoms, an inevitable accompaniment to the chemisorption-induced restructuring process. [Pg.417]

Strong adsorbate-substrate forces lead to chemisorption, in which a chemical bond is fomied. By contrast, weak forces result inphysisorption, as one calls non-chemical physical adsorption. [Pg.1758]

Overlap between p orbitals leads to cohesive energies of typically less than 0.4 eV molec The much stronger ionic and covalent bonding have binding energies of 10 and 3 eV atom respectively. Finally, physisorption is the weakest form of absorption to a solid surface characterized by a lack of a true chemical bond (chemisorption) between substrate and adsorbate and will be discussed in Chapter 4 (see e.g., Zangwill, 1988). [Pg.18]

Direct bonds between substrate and adsorbate are loosely divided into weak physical adsorption (physisorption), and stronger chemical bonding (chemisorption). We are here focusing on chemisorption cases, where strong substrate-adsorbate interactions make it reasonable to first consider the direct interactions between the adsorbate and the substrate. In physisorption, this interaction is likely to be competing with the interactions between neighbouring adsorbates which may be of similar strength. [Pg.222]

Physisorption involves only a weak attraction between the substrate and the adsorbent but in chemisorption a chemical reaction takes place between the adsorbent and atoms on the catalyst surface. As a result, chemisorbed species are attached to the surface with chemical bonds and are more difficult to remove. If the adsorption of hydrogen on nickel is considered as an example, the reaction involves the breaking of an H-H bond and the formation of two Ni-H bonds on the surface. As shown in Fig. 2.3, this adsorption occurs by way of an initially adsorbed dihydrogen molecule. It proceeds via a electron donation and back bonding to the a orbitals of the hydrogen molecule with the final formation of the two surface M-H species. [Pg.15]

As shown in Figure 16-4, a dihydrogen molecule is weakly attracted to the surface of the catalyst (physisorption). For chemisorption to occur, the adsorbate chemically bonds to the surface of the substrate. This causes the bond between the hydrogens to break, making them free to undergo reactions with other nearby chemicals. When the final product is created (the free hydrogen atoms binds to another reactant), the final product undergoes desorption. Traditionally, this flows in the gas stream for collection at the end. [Pg.261]

Depending upon the binding energy, adsorption is described as physical adsorption or chemisorption. In physical adsorption binding is weak (10-30 kJ mol ) and the adsorbate-substrate separation is large, typical of van der Waals interaction. In chemisorption, binding is stronger (>60 kJ mol ) and the separations are short, typical of chemical bonds. The surface structures formed by physically adsorbed and chemisorbed species differ markedly. [Pg.150]

Chemisorption occurs when the attractive potential well is large so that upon adsorption a strong chemical bond to a surface is fonued. Chemisorption involves changes to both the molecule and surface electronic states. For example, when oxygen adsorbs onto a metal surface, a partially ionic bond is created as charge transfers from the substrate to the oxygen atom. Other chemisorbed species interact in a more covalent maimer by sharing electrons, but this still involves perturbations to the electronic system. [Pg.294]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

The catalytic significance of Fig. 9.12 is that it represents the differences in the effective work functions that a molecule experiences upon adsorption at different positions on the surface. As explained in the Appendix, a low work function of the substrate enhances the capability of the substrate to donate electrons into empty chemisorption orbitals of the adsorbate. If such an orbital is antibonding with respect to an intramolecular bond of the adsorbed molecule, the latter is weakened due to a higher electron occupation. [Pg.264]

There is a wide range of adsorption enthalpies AH(adsi, ranging from effectively zero to as much a 600 kJ per mole of adsorbate. The adsorptive interaction cannot truly be said to be a bond if the enthalpy is small the interaction will probably be more akin to van der Waals forces, or maybe hydrogen bonds if the substrate bears a surface layer of oxide. We call this type of adsorption physical adsorption, which is often abbreviated to physisorption. At the other extreme are adsorption processes for which A//(ads) is so large that real chemical bond(s) form between the substrate and adsorbate. We call this type of adsorption chemical adsorption, although we might abbreviate this to chemisorption. [Pg.492]

The adsorption site, i.e. the chemisorption position of the adatoms on (within, below) the substrate surface, thanks to the polarisation dependence of SEXAFS. Often a unique assignment can be derived from the analysis of both polarisation dependent bond lengths and relative coordination numbers. The relative, polarisation dependent, amplitudes of the EXAFS oscillations indicate without ambiguity the chemisorption position if such position is the same for all adsorbed atoms. More than one chemisorption site could be present at a time (surface defect sites or just several of the ideal surface sites). If the relative population of the chemisorption sites is of the same order of magnitude, then the analysis of the data becomes difficult, or just impossible. [Pg.98]

If a surface reaction is to involve more than monolayer-chemisorption, then the species adsorbed on the surface must be able to migrate into the second and deeper layers forming new chemical bonds and often new molecular species. This is step 3, product formation, and it often requires an activation mechanism to proceed, i.e., a monolayer is formed and the reaction stops unless the substrate is held at elevated temperature or there is ion or electron bombardment. Damage-enhanced diffsusion, knock-on collisions, and bond breaking may promote the reaction in the presence of ion bombardment. Although the precise mechanisms are unclear, it is certain that electron and ion bombardment cause step 3 to occur in some instances where the chemical reaction does not proceed in the absence of radiation. [Pg.106]


See other pages where Chemisorption adsorbate-substrate bonds is mentioned: [Pg.126]    [Pg.48]    [Pg.2]    [Pg.382]    [Pg.54]    [Pg.369]    [Pg.425]    [Pg.233]    [Pg.211]    [Pg.443]    [Pg.11]    [Pg.299]    [Pg.118]    [Pg.113]    [Pg.36]    [Pg.158]    [Pg.214]    [Pg.54]    [Pg.299]    [Pg.417]    [Pg.222]    [Pg.6304]    [Pg.298]    [Pg.236]    [Pg.697]    [Pg.44]    [Pg.48]    [Pg.50]    [Pg.341]    [Pg.152]    [Pg.64]    [Pg.3]    [Pg.177]    [Pg.98]    [Pg.106]    [Pg.114]   
See also in sourсe #XX -- [ Pg.426 ]




SEARCH



Adsorbate-adsorbent bond

Adsorbed substrates

Bonding chemisorption

Bonding chemisorptive bond

Chemisorption substrate

Chemisorptive bond

Substrate Bonded

Substrate adsorbate

Substrate bonding

© 2024 chempedia.info