Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adenine separation

Figure 3.10 Stniciural details of the bridging units between pairs of bases in separate strands of the double helix of DNA (a) the thymine-adenine pair (b) the cytosine-guanine pair. Figure 3.10 Stniciural details of the bridging units between pairs of bases in separate strands of the double helix of DNA (a) the thymine-adenine pair (b) the cytosine-guanine pair.
In relation to separation of nucleotides, Hoffman61 found that adenine nucleotides interacted most strongly with cycloheptaamylose, presumably by inclusion of the base within the cavity of cyclodextrin. When epichlorohydrin-cross-linked cycloheptaamylose gel was used as a stationary phase for nucleic acid chromatography, adenine-containing compounds were retarded most strongly. [Pg.151]

Escherichia coli Adenine and adenosine are inhibitory74 and the synthesis of thiamine can be derepressed by culture in their presence.13,75 adth- Mutants are known.76 [l4C]Formate incorporates at C-2 of pyramine without dilution of molar activity. Glycine labeled with stable isotopes was fed to E. coli and the pyramine was analyzed by mass spectrometry. The two carbon atoms of glycine separated during the biosynthesis. The carboxyl was found12 at C-4, and the C-N fragment was the precursor of C-6-N-1. In conclusion, it is beyond doubt that pyramine synthesis follows the AIR pathway in E. coli. [Pg.305]

The DNA structure involves two polyanionic phosphodiester strands linked together by hydrogen bonding of base pairs. The strands can be separated by a denaturation process (melting). The melting temperatnre increases with an increase in guanine (G)-cytosine (C) content, since this base pair possess three hydrogen bonds as compared to just two for the adenine (A)-thymine (T) pair. [Pg.432]

Under conditions of copper deficiency, some methanotrophs can express a cytosolic, soluble form of MMO (sMMO) (20-23), the properties of which form the focus of the present review. The sMMO system comprises three separate protein components which have all been purified to homogeneity (24,25). The hydroxylase component, a 251 kD protein, contains two copies each of three subunits in an a 82y2 configuration. The a subunit of the hydroxylase houses the dinuclear iron center (26) responsible for dioxygen activation and for substrate hydroxylation (27). The 38.6 kD reductase contains flavin adenine dinucleotide (FAD) and Fe2S2 cofactors (28), which enable it to relay electrons from reduced nicotinamide adenine dinucleotide (NADH) to the diiron center in the... [Pg.267]

In conclusion, hole transfer between guanines that are separated by long (A T)n sequences is possible because also the adenines become involved as charge carriers. Such a change of the reaction mechanism can also be explained by calculations [21], and has been described by J. Jortner as well as D. Beratan and M.A. Ratner in their articles of this volume. [Pg.51]

It is helpful to think of the photosynthesis reaction as the sum of an oxidation half reaction and a reduction half reaction as shown in Figure 1. In fact, nature does separate these half reactions, in that the reduction of C02 to carbohydrates occurs in the stroma of the chloroplast, the organelle in the leaf where the photosynthesis reaction occurs, - whereas, the light-driven oxidation half reaction takes place on the thylakoid membranes which make up the grana stacks within the chloroplast. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) carries the reducing power and most of the energy to the stroma to drive the fixation of C02 with the help of some additional energy provided... [Pg.6]

Figure 1. The separation of the half reaction in the chloroplast of the photosynthetic plant cell. The dark reaction (left) and the light-driven reactions (right) are shown. Key NADP oxidized form of nicotinamide adenine dinucleotide phosphate ATPf adenosine triphosphate and Pit inorganic phosphate. Figure 1. The separation of the half reaction in the chloroplast of the photosynthetic plant cell. The dark reaction (left) and the light-driven reactions (right) are shown. Key NADP oxidized form of nicotinamide adenine dinucleotide phosphate ATPf adenosine triphosphate and Pit inorganic phosphate.
The free bases of the purines can be salvaged to spare de novo synthesis. The only hard thing is remembering what the names stand for. HGPRTase is hypoxanthine-guanine phosphoribosyltransferase, and it makes both IMP and GMP. A separate enzyme exists for the salvage of adenine. The salvage pathways are included in Fig. 19-1. [Pg.241]

For the formation of one 02 molecule four electrons have to be transferred. This requires a "quantum storage device". In the photosynthetic system of green plants this is achieved with two photosystems that are linked through an electron transport chain, Fig. 10.2, and by means of the thylakoid-membrane that enables the separation of the photoproducts 02 and the reduced form of nicotinamide adenine dinucleotide phosphate, NADPH. [Pg.340]

HPLC with fluorescence detection was employed for the analysis of riboflavin (RF), flavin mononucleotide (FMN) and flavin-adenin dinucleotide (FAD) in beer, wine and other beverages. The investigation was motivated by the finding that these compounds are responsible for the so-called taste of light which develops in beverages exposed to light. Samples were filtered and injected in to the analytical column without any other pretreatment. Separations were carried out in an ODS column (200 X 2.1mm i.d. particle size 5 pm). Solvents A and B were 0.05 M phosphate buffer (pH 3) and ACN, respectively. The... [Pg.210]

The relaxation approach has played an important role in our understanding of the mechanisms of complex formation in solution (Chap. 4) 39,i4o -pjjg qj computer programs has now eased the study of multiple equilibria. For example, four separate relaxation effects with t s ranging from 100 xs to 35 ms are observed in a temperature-jump study of the reactions of Ni with flavin adenine dinucleotide (fad) (Eqn. (8.121)). The complex relaxation... [Pg.36]


See other pages where Adenine separation is mentioned: [Pg.481]    [Pg.481]    [Pg.283]    [Pg.1165]    [Pg.211]    [Pg.26]    [Pg.155]    [Pg.340]    [Pg.319]    [Pg.149]    [Pg.20]    [Pg.865]    [Pg.63]    [Pg.104]    [Pg.114]    [Pg.124]    [Pg.237]    [Pg.107]    [Pg.288]    [Pg.365]    [Pg.15]    [Pg.301]    [Pg.165]    [Pg.180]    [Pg.286]    [Pg.814]    [Pg.570]    [Pg.305]    [Pg.332]    [Pg.420]    [Pg.501]    [Pg.228]    [Pg.448]    [Pg.278]    [Pg.412]    [Pg.70]    [Pg.153]    [Pg.34]    [Pg.74]   
See also in sourсe #XX -- [ Pg.194 ]




SEARCH



© 2024 chempedia.info