Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilicity acyl radicals

Protonated pyridazine is attacked by nucleophilic acyl radicals at positions 4 and 5 to give 4,5-diacylpyridazines. When acyl radicals with a hydrogen atom at the a-position to the carbonyl group are used, the diacylpyridazines are mainly converted into cyclo-penta[ f]pyridazines by intramolecular aldol reactions (Scheme 43). [Pg.30]

The general chemistry of acyl radicals has been recently reviewed/88 Acyl radicals have nucleophilic character. Absolute rate constants for substituted phenacyl radical addition to BA have been reported to be in the range 1.3-5.5xl05... [Pg.118]

Carbamoyl radicals, like acyl radicals, show a net nucleophilic character which permits the amidation of protonated heteroaromatic bases. Quantitative studies concerning the polar character of the carbamoyl radicals have not yet been published, but the complete selectivity of attack at the a- and /-positions of protonated heteroaromatic bases indicates a definite nucleophilic character and synthetic value. [Pg.167]

The synthesis of deoxysepiapterin (82) has been recently achieved by homo-lytic nucleophilic substitution of the pteridine nucleus by acyl radicals (505). Since this substitution arises preferentially at the most electron-deficient 7 position, protection at 7 position is necessary for nucleophilic attack at the 6 position. 2,4-Diamino-7-methylthiopteridine (597) and 2-amino-4- -pentyloxy-7-n-pro-pylthiopteridine (600), protected by the thio function, can be used as starting materials. Homolytic acylation of 597 with the system propionalde-hyde/Fe2+//ert-butylhydroperoxide afforded 6-propionylpteridine (598) in good yields, which could be transformed to deoxysepiapterin (82) by selective hydrolysis followed by deprotection of the thio function (Scheme 75). Deoxysepiapterin (82) can also be prepared by a similar procedure from 600. [Pg.300]

Because the addition steps are generally fast and consequently exothermic chain steps, their transition states should occur early on the reaction coordinate and therefore resemble the starting alkene. This was recently confirmed by ab initio calculations for the attack at ethylene by methyl radicals and fluorene atoms. The relative stability of the adduct radicals therefore should have little influence on reacti-vity 2 ). The analysis of reactivity and regioselectivity for radical addition reactions, however, is even more complex, because polar effects seem to have an important influence. It has been known for some time that electronegative radicals X-prefer to react with ordinary alkenes while nucleophilic alkyl or acyl radicals rather attack electron deficient olefins e.g., cyano or carbonyl substituted olefins The best known example for this behavior is copolymerization This view was supported by different MO-calculation procedures and in particular by the successful FMO-treatment of the regioselectivity and relative reactivity of additions of radicals to a series of alkenes An excellent review of most of the more recent experimental data and their interpretation was published recently by Tedder and... [Pg.26]

The introduction of substituents into position 7 of a 2,4-disubstituted pteridine can be effected very cleanly by the use of acyl radicals typically and has been known for many years. Treatment of aldehydes with /-butyl hydroperoxide and iron(ll) generates acyl radicals which add selectively to the 7-position. A recent exploitation of this chemistry has provided a large number of new examples including both aryl and alkyl acyl radicals as reagents <2004PTR129> pA , data have been compiled (Section 10.18.4) and many nucleophilic substitution reactions of the 7-acylated pteridines and functional group modifications have been described (Section 10.18.7.2). [Pg.923]

The acyl-alkv biradical obtained by ring-opening of a cyclic ketone is able lo undergo intramolecular disproportionation in one of two ways. A hydrogen atom may be transferred to the acyl radical from the position adjacent to the alkyl group, and this produces an unsaturated aldehyde (4.21). Alternatively, a hydrogen may be transferred to the alkyl radical from the position adjacent to the acyl group, and this results in the formation of a ketene (4.22). Many ketenes are labile, and the use of a nucleophilic solvent or addend. [Pg.112]

Smaller-ring ketones, especially cydobutanones and more rigid cyclopentanones or cyclohexanones, give biradicals that follow the fourth of the pathways in which carbon monoxide is not tost. In this process a new oxygen-carbon bond is formed by attack of the oxygen of the acyl radical on the alkyl radical centre this generates a carbene which can subsequently react with a nucleophilic solvent such as methanol (4.28). [Pg.114]

Most synthetically useful radical addition reactions pair nucleophilic radicals with electron poor alkenes. In this pairing, the most important FMO interaction is that of the SOMO of the radical with the LUMO of the alkene.36 Thus, many radicals are nucleophilic (despite being electron deficient) because they have relatively high-lying SOMOs. Several important classes of nucleophilic radicals are shown in Scheme IS. These include heteroatom-substituted radicals, vinyl, aryl and acyl radicals, and most importantly, alkyl radicals. [Pg.728]

Houck and coworkers postulate that the origin of the regioselectivity is at the biradicalforming step and directly affected by the polarity of the alkene. The /J-carbon, considered as nucleophilic, adds rapidly to the less substituted side of the electron-deficient alkene, whereas a position considered as an a-acyl radical (more electrophilic than an alkyl radical) adds rapidly to the less substituted side of electron-rich alkenes. The calculated relative energies for the addition of jtjt triplet acrolein to different substituted alkenes at the first bond-forming step (Table 3) are found to be in good agreement with experimental values determined in the photoaddition of cyclohexenone to the related alkene. [Pg.664]

In designing multicomponent coupling reactions, the nature of the individual components is obviously a key factor. Generally speaking, carbon radical species, such as alkyl radicals, aryl radicals, vinyl radicals, and acyl radicals are all classified as nucleophilic radicals, which exhibit high reactivity toward electron-deficient alkenes [2]. To give readers some ideas about this, kinetic results on the addition of tert-butyl and pivaloyl radicals are shown in Scheme 6.2. These radicals add to acrylonitrile with rate constants of 2.4 x 106 M-1 s 1 and 5 x 105 M-1 s-1 at... [Pg.169]

Owing to their nucleophilic character, acyl radicals are easily trapped by protonated N-heteroarenes, leading to the formation of the corresponding acyl... [Pg.338]

A new process for the homolytic acylation of protonated heteroaromatic bases has been developed by Minisci et al. An A-oxyl radical generated from iV-hydroxyphthalimide by oxygen and Co(ll) abstracts a hydrogen atom from an aldehyde. The resulting nucleophilic acyl radical adds to the heterocycle which is then rearomatized via a chain process. Under these conditions, quinoline and benzaldehyde afford three products (Equation 108) <2003JHC325>. A similar reaction with 4-cyanopyridine gives 2-benzoyl-4-cyanopyridine in 96% yield. [Pg.86]

An acyl radical is also nucleophilic. For example, the rate constant of (CH3)3CC0 (te/T-butylcarbonyl radical, pivaloyl radical) with acrylonitrile is 4.8 X 105 M-1 s-1 (25 °C), and so its addition reaction proceeds effectively [72]. [Pg.33]

Acyl radical has a nucleophilic character and cyclizes via SOMO-LUMO interaction. Eq. 3.22 shows the cyclization of acyl radicals formed from the reaction of selenol esters (67) with Bu3SnH/AIBN or Bu3SnH/Et3B, to give the cyclic ketones (68) via 5-exo-trig or 6-exo-trig manner through the transition state [II] [84-90]. [Pg.68]

Se-Ph selenoester is a good precursor of an acyl radical where it behaves as a nucleophilic radical. Treatment of Se-Ph selenoester (20) and benzyl acrylate with Bu3SnH generates a y-keto ester (21) as shown in eq. 4.1 la. 2-Indolylacyl radical can be generated from Se-Ph selenoester (22) by this method (eq. 4.11b) [25-30]. [Pg.127]

Eq. 4.56 shows the formation of 7-lactam (156) from imino bromide (155), through the formation of an acyl radical with monoxide, 5-exo-trig ring closure at the nitrogen atom by the nucleophilic acyl radical, and finally abstraction of a hydrogen atom from Bu3SnH [147]. [Pg.150]

As mentioned before, alkyl radicals and acyl radicals have a nucleophilic character therefore, radical alkylation and acylation of aromatics shows the opposite reactivity and selectivity to polar alkylation and acylation with the Friedel-Crafts reaction. Thus, alkyl radicals and acyl radicals do not react with anisole, but may react with pyridine. Eq. 5.1 shows the reaction of an alkyl radical with y-picoline (1). The nucleophilic alkyl radical reacts at the 2-position of y-picoline (1), where electron density is lower than that of the 3-position. So, 2-alkyl-4-methylpyridine (2) is obtained with complete regioselectivity. When pyridine is used instead of y-picoline, a mixture of 2-alkylpyridine and 4-alkylpyridine is obtained. Generally, radical alkylation or radical acylation onto aromatics is not a radical chain reaction, since it is just a substitution reaction of a hydrogen atom of aromatics by an alkyl radical or an acyl radical through the addition-elimination reaction. Therefore, the intermediate adduct radical (a complex) must be rearomatized to form a product and a hydrogen atom (or H+ and e ). Thus, this type of reactions proceeds effectively under oxidative conditions [1-6]. [Pg.157]

In the previous sections, the reactions of nucleophilic alkyl and acyl radicals with electron-deficient aromatics via SOMO-LUMO interaction have been described. At this point, we introduce the reactions of electrophilic alkyl radicals and electron-rich aromatics via SOMO-HOMO interaction, though the study is quite limited. Treatment of ethyl iodoacetate with triethylborane in the presence of electron-rich aromatics (36) such as pyrrole, thiophene, furan, etc. produces the corresponding ethyl arylacetates (37) [50-54]. [Pg.168]

This mechanistic sequence (Sch. 4) wherein the triplet excited enone adds to the alkene, either via an exciplex intermediate or directly, to afford triplet 1,4-biradicals, which (after undergoing intersystem crossing) either cyclize to product(s) or revert to ground state reactants, is confirmed by both semi-empirical and ab-initio calculations [21-24], The origin of regioselectivity is supposed to stem from the primary binding step, the enone triplet being considered as a (nucleophilic) alkyl radical at C(3) linked to an (electrophilic) ot-acyl radical at C(2) [25], Thus additions of C(2) to the less substituted terminus of electron rich alkenes and of C(3) to the least substituted terminus of electron deficient alkenes should occur preferentially [26],... [Pg.214]

An alternative method for the substitution of a hydrogen atom in -electron deficient heterocycles is using the nucleophilic character of radicals in homolytic aromatic displacement reactions <74AHC(16)123>. Acylation with acyl radicals derived from aldehydes is an especially important approach since Friedel-Crafts-type reactions are not applicable to pteridines. [Pg.696]

Heating thiazole with phenylazotriphenylmethane at 75 °C for 24 hours affords 2-phenyl-5-triphenylmethyl thiazole (75 Scheme 43). The 1-adamantyl radical and other nucleophilic alkyl and acyl radicals react with 2-substituted benzothiazoles in a homolytic ipso substitution yielding the corresponding 2-alkyl or 2-acylbenzothiazole (Scheme 44) (77CC316). [Pg.265]

Benzothiazole is acylated selectively in the 2-position by acyl radicals generated from a variety of aldehydes under the influence of the redox system f-butylhydroperoxide-ferrous sulfate. The nucleophilicity of acyl radicals is confirmed by the higher reactivity of 6-nitrobenzothiazole. The reaction, which could detect acyl radicals in the oxidation of aldehydes by various oxidizing agents, could serve as a diagnostic test for the presence of such radicals (71JCS(C)1747). [Pg.265]

Some mechanistic aspects of the above cascade reaction deserve comment. Thus, after the intermolecular addition of the nucleophilic acyl radical to the alkene, the electrophilic radical adduct A, instead of undergoing reduction, reacts intramolecularly at the indole 3-position (formally a 5-endo cyclization) to give a new stabilized captodative radical B, which is oxidized to the fully aromatic system. (For a discussion of this oxidative step, see Section 1.5.)... [Pg.4]

Intramolecular disproportionation of [1] could conceivably result in the formation of unsaturated aldehyde or ester. Both paths are well known to occur with cyclic alkanones (la). Abstraction of H by the acyl radical portion of [1] would produce alkenal [3] while abstraction of by the alkyl radical portion of [1] would produce ketene [4] which may be efficiently trapped in nucleophilic alcoholic solvents to yield ester [5]. The intramolecular nature of alkenal formation is supported by deuterium labeling experiments (5), while the intramolecular nature of ketene formation is supported by (a) deuterium labeling experiments (6,7), and (b) the observed decrease in ketene formation with decreasing ring size (8). [Pg.201]

Miura et al. built on Ryu s previous work to achieve four-component radical cascades leading to diketones (Scheme 63) [174]. This outstanding result relies on initial carbonylation of alkyl radicals to form acyl radicals, such as 196. The nucleophilicity of acyl radicals allowed them to react with electron-deficient olefins to form ct-cyano radicals (197), whose phihcity is now reversed. Thus, they were able to add onto stannyl enolates and led to ketyl radicals such as 198. Those latter radicals underwent / -elimination of trib-utylstannyl radicals. This key elimination regenerated the mediator for the initial dehalogenation. This very fine tuning of the radical reactivities is the key element that makes the whole process work. [Pg.43]

A third possibility of chemical modification is conversion into an acylsilane which reduces the oxidation potential of the corresponding ketone by approximately 1 V. A peak potential of 1.45 V (relative to Ag/AgCl) for the oxidation of undecanoyltrimethylsilane has been reported. Preparative electrochemical oxidations of acylsilanes proceed in methanol to give the corresponding methyl esters. A two-step oxidation process must be assumed because of the reaction stoichiometry —oxidation of the acylsilane results in the carbonyl radical cation which is meso-lytically cleaved to give the silyl cation and the acyl radical, which is subsequently oxidized to give the acyl cation as ultimate electrophile which reacts with the solvent. A variety of other nucleophiles have been used and a series of carboxylic acid derivatives are available via this pathway (Scheme 49) [198]. [Pg.1151]


See other pages where Nucleophilicity acyl radicals is mentioned: [Pg.23]    [Pg.159]    [Pg.97]    [Pg.158]    [Pg.165]    [Pg.336]    [Pg.292]    [Pg.1295]    [Pg.22]    [Pg.148]    [Pg.338]    [Pg.1369]    [Pg.149]    [Pg.163]    [Pg.264]    [Pg.1]    [Pg.2]    [Pg.13]    [Pg.1369]    [Pg.1134]   
See also in sourсe #XX -- [ Pg.118 ]




SEARCH



Acyl radicals

Acylate radical

Nucleophiles acylation

Nucleophilic radicals

Radical acylation

© 2024 chempedia.info