Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyl kinetic resolution

Keywords Acylation, Kinetic resolution, Desymmetrization, Nucleophilic catalysis... [Pg.189]

Dalaigh, C.O. and Connon, S.J. (2007) Nonenzymatic acylative kinetic resolution of Baylis-Hillman adducts. The Journal of Organic Chemistry, 72, 7066-7069 Min, S., Wen, G.Y and Hong-Bin, L. (2007) Baylis-Hillman reaction of sulfonyl aldimines or aryl aldehydes with... [Pg.88]

Isatin as a strategic motif for asymmetric catalysis 13CAC2131. Nonenzymatic acylative kinetic resolution of racemic amines and related compounds 12EJ01471. [Pg.206]

Scheme 22.1 Acylative kinetic resolution of racemic secondaiy alcohols with Fu s planar-chiral DMAP catalysts. Scheme 22.1 Acylative kinetic resolution of racemic secondaiy alcohols with Fu s planar-chiral DMAP catalysts.
Miller developed peptide-based iV-methylimidazole catalysts and applied them to acylative kinetic resolution of N-acylated amino alcohol 29 (Scheme 22.6). The p-hairpin secondary structure of the peptide backbone in catalysts 30 and 31 constitutes a unique environment for effective asymmetric induction. Acylative kinetic resolution of 29 with acetic anhydride in the presence of catalyst 31 proceeded with high s values (s = up to 51). The asymmetric acylation was further extended to remote asymmetric desymmetrisation of a o-symmetric nanometer-scale diol substrate, 32 (Scheme 22.7). Catalyst 33 enabled the enantiotopic hydrojq groups in 32 to be distinguished even though they are located 5.75 A from the prochiral stereogenic centre, and 9.79 A from each other. [Pg.358]

Scheme 22.6 Acylative kinetic resolution of racemic secondary alcohols with Miller s peptide-based iV-methylimidazole catalysts. Scheme 22.6 Acylative kinetic resolution of racemic secondary alcohols with Miller s peptide-based iV-methylimidazole catalysts.
Kinetic resolution of the racemic aziridine-2-carboxylate 82 (Scheme 3.26) was reported by Iqbal and co-workers [74], When 82 was allowed to react with N-cinna-moyl-L-proline (81) under mixed anhydride coupling conditions, the N-acyl azir-idine 83 was obtained in optically pure form along with aziridine 84. [Pg.84]

Table 1.3 Influence ofthe organic solvent on the enantioselectivity of the protease subtilisin in the kinetic resolution ofthe racemic amine (9) (expressed as the ratio ofthe initial rate of acylation of the pure enatiomers, Vs/vr). Table 1.3 Influence ofthe organic solvent on the enantioselectivity of the protease subtilisin in the kinetic resolution ofthe racemic amine (9) (expressed as the ratio ofthe initial rate of acylation of the pure enatiomers, Vs/vr).
Despite its widespread application [31,32], the kinetic resolution has two major drawbacks (i) the maximum theoretical yield is 50% owing to the consumption of only one enantiomer, (ii) the separation of the product and the remaining starting material may be laborious. The separation is usually carried out by chromatography, which is inefficient on a large scale, and several alternative methods have been developed (Figure 6.2). For example, when a cyclic anhydride is the acyl donor in an esterification reaction, the water-soluble monoester monoacid is separable by extraction with an aqueous alkaline solution [33,34]. Also, fiuorous phase separation techniques have been combined with enzymatic kinetic resolutions [35]. To overcome the 50% yield limitation, one of the enantiomers may, in some cases, be racemized and resubmitted to the resolution procedure. [Pg.135]

The main application of the enzymatic hydrolysis of the amide bond is the en-antioselective synthesis of amino acids [4,97]. Acylases (EC 3.5.1.n) catalyze the hydrolysis of the N-acyl groups of a broad range of amino acid derivatives. They accept several acyl groups (acetyl, chloroacetyl, formyl, and carbamoyl) but they require a free a-carboxyl group. In general, acylases are selective for i-amino acids, but d-selective acylase have been reported. The kinetic resolution of amino acids by acylase-catalyzed hydrolysis is a well-established process [4]. The in situ racemization of the substrate in the presence of a racemase converts the process into a DKR. Alternatively, the remaining enantiomer of the N-acyl amino acid can be isolated and racemized via the formation of an oxazolone, as shown in Figure 6.34. [Pg.146]

Figure 6.47 Kinetic resolution acylation and hydrolysis yield opposite enantiomers. Figure 6.47 Kinetic resolution acylation and hydrolysis yield opposite enantiomers.
Moreover, it is possible to open racemic azlactones by acyl bond cleavage to form protected amino acids in a dynamic kinetic resolution process. As azlactones suffer a fast racemization under the reaction conditions, eventually all starting material is converted [115]. [Pg.170]

Ruble JC, Tweddell J, Fu GC (1998) Kinetic resolution of arylalkylcarbinols catalyzed by a planar-chiral derivative of DMAP a new benchmark for nonenzymatic acylation. J Org Chem 63 2794-2795... [Pg.176]

Tao B, Ruble JC, Hole DA, Fu GC (1999) Nonenzymatic kinetic resolution of propargylic alcohols by a planar-chiral DMAP Derivative crystallographic characterization of the acylated catalyst. J Am Chem Soc 121 5091-5092... [Pg.176]

Bellemin-Laponnaz S, Twedel J, Ruble JC, Breitling FM, Fu GC (2000) The kinetic resolution of allylic alcohols by a non-enzymatic acylation catalyst application to natural product synthesis. Chem Conunun 1009-1010... [Pg.176]

Aral S, Bellemin-Laponaz S, Fu GC (2001) Kinetic resolution of amines by a nonenzymatic acylation catalyst. Angew Chem Int Ed 40 234-236... [Pg.176]

C-chiral racemic y-hydroxy sulfides were also resolved using PEL under kinetic resolution conditions. The products were transformed into optically active 3-(alkanesulfonyloxy)thiolane salts (Scheme 1). Similarly, 1,2-cyclic sulfite glycerol derivatives cis and trans) were resolved into enantiomers via a Pseudomonas cepacia-catalysed acylation with vinyl butyrate. The E values depended on the solvent used and varied from 2 to 26. ... [Pg.162]

Another approach to the synthesis of chiral non-racemic hydroxyalkyl sulfones used enzyme-catalysed kinetic resolution of racemic substrates. In the first attempt. Porcine pancreas lipase was applied to acylate racemic (3, y and 8-hydroxyalkyl sulfones using trichloroethyl butyrate. Although both enantiomers of the products could be obtained, their enantiomeric excesses were only low to moderate. Recently, we have found that a stereoselective acetylation of racemic p-hydroxyalkyl sulfones can be successfully carried out using several lipases, among which CAL-B and lipase PS (AMANO) proved most efficient. Moreover, application of a dynamic kinetic resolution procedure, in which lipase-promoted kinetic resolution was combined with a concomitant ruthenium-catalysed racem-ization of the substrates, gave the corresponding p-acetoxyalkyl sulfones 8 in yields... [Pg.163]

However, when subtilisin E was replaced by subtilisin Carlsberg, the hydrolysis of the S-N bond in some A(-acyl arenesulfinamides 34 unexpectedly became the main hydrolytic process giving under the kinetic resolution conditions, in addition to the unreacted substrates, the corresponding sulfinic acids and... [Pg.170]

However, the most common and important method of synthesis of chiral non-racemic hydroxy phosphoryl compounds has been the resolution of racemic substrates via a hydrolytic enzyme-promoted acylation of the hydroxy group or hydrolysis of the 0-acyl derivatives, both carried out under kinetic resolution conditions. The first attempts date from the early 1990s and have since been followed by a number of papers describing the use of a variety of enzymes and various types of organophosphorus substrates, differing both by the substituents at phosphorus and by the kind of hydroxy (acetoxy)-containing side chain. [Pg.173]

Stereoselective hydrolysis of racemic l-(//-phenylacetylamino) alkanephos-phonic acids performed in the presence of penicillin acylase under the kinetic resolution conditions gave both the unreacted substrates and the products - the corresponding 1-aminophosphonic acids in high yields and with full enantioselec-tivity. The unreacted A -acyl derivatives were hydrolysed chemically and in this way each enantiomer of the free acid was obtained (Scheme 5). ... [Pg.181]

The ability of enzymes to achieve the selective esterification of one enantiomer of an alcohol over the other has been exploited by coupling this process with the in situ metal-catalysed racemisation of the unreactive enantiomer. Marr and co-workers have used the rhodium and iridium NHC complexes 44 and 45 to racemise the unreacted enantiomer of substrate 7 [17]. In combination with a lipase enzyme (Novozyme 435), excellent enantioselectivities were obtained in the acetylation of alcohol 7 to give the ester product 43 (Scheme 11.11). A related dynamic kinetic resolution has been reported by Corberdn and Peris [18]. hi their chemistry, the aldehyde 46 is readily racemised and the iridium NHC catalyst 35 catalyses the reversible reduction of aldehyde 46 to give an alcohol which is acylated by an enzyme to give the ester 47 in reasonable enantiomeric excess. [Pg.258]

A different MS-based ee-assay makes use of a proline-derived mass-tagged acylating agent.95 In the course of derivatization it is necessary that some degree of kinetic resolution comes about. The sensitivity of the method was reported to be 10% ee. It can also be applied to the reaction of a prochiral compound lacking enantiotopic groups, as in the transformation of acetophenone to phenylethanol. [Pg.532]

Benzotetramisole 213 has been identified as an effective catalyst for kinetic resolution of sec-benzylic and propargylic alcohols 214 to give 215 in excellent enantioselectivity O60L1351 06OL4859>. The benzotetramisole-catalyzed kinetic resolution has been extended to 2-oxazolidinone 217 via enantioselective /V-acylation <06JA6536>. [Pg.260]

Both pyridinium salts and pyridine A-oxides are of increased interest as chiral catalysts in organic reactions. Connon and Yamada independently designed and examined pyridinium salts as chiral catalysts in the acylation of secondary alcohols <06OBC2785 06JOC6872>. These two catalysts can be used for kinetic resolution of various sec-alcohols and uf/-diols in good to moderate enantiomeric excess. [Pg.323]

The one-pot dynamic kinetic resolution (DKR) of ( )-l-phenylethanol lipase esterification in the presence of zeolite beta followed by saponification leads to (R)-l phenylethanol in 70 % isolated yield at a multi-gram scale. The DKR consists of two parallel reactions kinetic resolution by transesterification with an immobilized biocatalyst (lipase B from Candida antarctica) and in situ racemization over a zeolite beta (Si/Al = 150). With vinyl octanoate as the acyl donor, the desired ester of (R)-l-phenylethanol was obtained with a yield of 80 % and an ee of 98 %. The chiral secondary alcohol can be regenerated from the ester without loss of optical purity. The advantages of this method are that it uses a single liquid phase and both catalysts are solids which can be easily removed by filtration. This makes the method suitable for scale-up. The examples given here describe the multi-gram synthesis of (R)-l-phenylethyl octanoate and the hydrolysis of the ester to obtain pure (R)-l-phenylethanol. [Pg.133]

Verzijl, G.K.M., de Vries, J.G. and Broxterman, Q.B., Removal of the acyl donor residue allows the use of simple alkyl esters as acyl donors for the dynamic kinetic resolution of secondary alcohols. Tetrahedron Asymm., 2005, 16, 1603. [Pg.140]

The complete transformation of a racemic mixture into a single enantiomer is one of the challenging goals in asymmetric synthesis. We have developed metal-enzyme combinations for the dynamic kinetic resolution (DKR) of racemic primary amines. This procedure employs a heterogeneous palladium catalyst, Pd/A10(0H), as the racemization catalyst, Candida antarctica lipase B immobilized on acrylic resin (CAL-B) as the resolution catalyst and ethyl acetate or methoxymethylacetate as the acyl donor. Benzylic and aliphatic primary amines and one amino acid amide have been efficiently resolved with good yields (85—99 %) and high optical purities (97—99 %). The racemization catalyst was recyclable and could be reused for the DKR without activity loss at least 10 times. [Pg.148]

Nechah, M., Azzi, N., Vanthuyne, N., Bertrand, M., Gastaldi, S. and Gil, G., Highly selective enzymatic kinetic resolution of primary amines at 80°C a comparative study of carboxylic acids and their ethyl esters as acyl donors. J. Org. Chem., 2007, 72, 6918-6923. [Pg.155]


See other pages where Acyl kinetic resolution is mentioned: [Pg.134]    [Pg.4]    [Pg.378]    [Pg.1225]    [Pg.1225]    [Pg.230]    [Pg.134]    [Pg.4]    [Pg.378]    [Pg.1225]    [Pg.1225]    [Pg.230]    [Pg.175]    [Pg.151]    [Pg.171]    [Pg.169]    [Pg.176]    [Pg.187]    [Pg.532]    [Pg.135]    [Pg.117]    [Pg.148]    [Pg.11]    [Pg.40]    [Pg.137]    [Pg.155]   
See also in sourсe #XX -- [ Pg.287 ]




SEARCH



Acyl transfer reactions kinetic resolution

Acylation kinetics

Chiral acyl donors kinetic resolution

Kinetic resolution acylation

Racemizable Acyl Donors for Enzymatic Dynamic Kinetic Resolution

© 2024 chempedia.info