Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyl hydride complexes

Precursors 755 and 756 have also been found to react with the terminal alkynes HC = CPh ° and HC = CC02Et to similar effect (Section III-D.l), and with the aldehyde 0 = CHC6H4N02-4 to afford the acyl hydride complexes Tp RhH C( = 0)C6H4N02-4 (PR3) (R = Ph (688), C6H4F-4 (689)), which are remarkably stable, undergoing merely 30% decomposition over 21 h at 70... [Pg.298]

A simple catalytic cycle for hydroacylation is shown in part A of Scheme 18.19. Hydroacylation occurs by oxidative addition of the formyl C-H bond to generate an acyl hydride complex. Insertion of olefin into the metal hydride then generates an alkyl acyl intermediate. These complexes undergo reductive elimination, as described in Chapter 8. Although these basic steps constitute the catalytic cycle, many other processes occur outside of this cycle in the catalytic system. Some of these steps lying off the cycle lead to poisoning of the catalyst and others are unproductive reversible processes that have been revealed by H/D exchange experiments. Part B of Scheme 18.19 shows a catalytic cycle that includes these side processes. [Pg.861]

In 1978, Schwartz and Gell found that CO would induce reductive elimination of alkane in various zirconocene alkyl hydride complexes with concurrent formation of Cp2Zr(CO)2 (2) (52,53). It was postulated that CO initially coordinates to the 6-e complex 23 forming the coordina-tively saturated species 24 which can then reductively eliminate alkane and/or rearrange to a zirconocene acyl hydride intermediate. When R = cyclohexylmethyl, methylcyclohexane reductively eliminated and Cp2Zr(CO)2 was isolated in 25% yield. [Pg.334]

A similar involvement of palladium hydride, palladium alkyl, and palladium acyl complexes as intermediates in the catalytic cycle of the Pd-catalyzed hydroxycarbonylation of alkenes was reported for the aqueous-phase analogs. The cationic hydride PdH(TPPTS)3]+ was formed via the reduction of the Pd11 complex with CO and H20 to [Pd(TPPTS)3] and subsequent protonation in the acidic medium. The reaction of the hydride complex with ethene produced two new compounds, [Pd(Et)(TPPTS)3]+ and Pd(Et)(solvent)(TPPTS)2]+. The sample containing the mixture of palladium alkyl complexes reacted readily with CO to afford trans-[Pd(C(Q)Et)(TPPTS)2]+.665... [Pg.191]

The mechanisms of the hydroxycarbonylation and methoxycarbonylation reactions are closely related and both mechanisms can be discussed in parallel (see Section 9.3.6).631 This last reaction has been extensively studied. Two possibilities have been proposed. The first starts the cycle with a hydrido-metal complex.670 In this cycle, an alkene inserts into a Pd—H bond, and then migratory insertion of CO into an alkyl-metal bond produces an acyl-metal complex. Alcoholysis of the acyl-metal species reproduces the palladium hydride and yields the ester. In the second mechanism the crucial intermediate is a carbalkoxymetal complex. Here, the insertion of the alkene into a Pd—C bond of the carbalkoxymetal species is followed by alcoholysis to produce the ester and the alkoxymetal complex. The insertion of CO into the alkoxymetal species reproduces the carbalkoxymetal complex.630 Both proposed cycles have been depicted in Scheme 11. [Pg.192]

In 2004 Caporali investigated the hydroformylation of 1-hexene and cyclohexene using HRh(CO)(PPh3)3 [61]. The collected data indicated that the rate-determining step in the hydroformylation cycle depends upon the structure of the olefin. With an alpha-olefin like 1-hexene, the slowest step seems to be the hydrogenolysis of the acyl rhodium complex. In the presence of cyclohexene as a model for an internal olefin, the rate-determining step is the reaction of the olefin with the rhodium hydride complex (intermediate II in Fig. 6). [Pg.23]

However, considerable amounts of 2,3-dihydrofuran 50 and tetrahydro-furan-2-carbaldehyde 53 were present because of an isomerization process. The isomerization takes place simultaneously with the hydroformylation reaction. When the 2,5-dihydrofuran 46 reacts with the rhodium hydride complex, the 3-alkyl intermediate 48 is formed. This can evolve to the 2,3-dihydrofuran 50 via /3-hydride elimination reaction. This new substrate can also give both 2- and 3-alkyl intermediates 52 and 48, respectively. Although the formation of the 3-alkyl intermediate 48 is thermodynamically favored, the acylation occurs faster in the 2-alkyl intermediates 52. Regio-selectivity is therefore dominated by the rate of formation of the acyl complexes. The modification of the phosphorus ligand and the conditions of the reaction make it possible to control the regioselectivity and prepare the 2- or 3-substituted aldehyde as the major product [78]. As far as we know, only two... [Pg.64]

A viable iron carbonyl-mediated reduction process converts acid chlorides and bromoalkanes into aldehydes [3, 6]. Yields are high, with the exception of nitro-benzoyl chloride, and the procedure is generally applicable for the synthesis of alkyl, aryl and a,(i-unsaturated aldehydes from the acid chlorides. The reduction proceeds via the initial formation of the acyl iron complex, followed by hydride transfer and extrusion of the aldehyde (cf. Chapter 8). [Pg.501]

A cis-coordinating ligand is apparently required to bind and activate MeOH so that a methoxy group is transferred to the polyketone chain and a hydride remains on palladium. Two mechanisms are possible for this reaction (i) nucleophilic attack by the oxygen at the acyl carbonyl with concerted formation of Pd-H (ii) formation of a Pd(acyl) (methoxy) complex and H, followed by reductive elimination and subsequent proton attack on a Pd center. No experimental evidence favoring either mechanism in ethene/CO copolymerisation has been provided so far. [Pg.294]

The fate of the acyl palladium complex depends on the circumstances. In the presence of a suitable nucleophile (alcohol, amine) it is converted into the corresponding carboxylic acid derivative. The side product, a palladium hydride is converted to the active form of the catalyst in a reductive elimination step, resulting in the formation of an equimolar amount of acid, which is quenched by an added base (in most cases the excess of the nucleophile). [Pg.24]

Neutral formyl complexes which contain ligating CO often decompose by decarbonylation however, several exceptions exist. For instance, the osmium formyl hydride Os(H)(CO)2(PPh3)2(CHO) evolves H2(54). Although the data are preliminary, the cationic iridium formyl hydride 49 [Eq. (14)] may also decompose by H2 evolution (67). These reactions have some precedent in earlier studies by Norton (87), who obtained evidence for rapid alkane elimination from osmium acyl hydride intermediates Os(H)(CO)3(L)(COR) [L = PPh3, P(C2H5)3], Additional neutral formyls which do not give detectable metal hydride decomposition products have been noted (57, 65) however, in certain cases this can be attributed to the instability of the anticipated hydride under the reaction conditions (H2 loss or reaction with halogenated solvents). [Pg.28]

The mechanism of the reaction of the alcohol (or water) with the acyl complex to produce ester (or acid) and regenerate the cobalt hydride complex is not known. Because the reaction of the analogous manganese complex with alcohols is known to proceed through a hemiacetal-like complex, this mechanism has been written for the carboxylation reaction (equation 42). [Pg.937]

An additional result of our study focuses on the importance of the donor substituent on the chelating substrate. By comparison of the affinities of various iridiura(I) complexes for phosphi-no and arsino substituted aldehydes as outlined in Scheme 1, we were able to isolate the analytically pure acyl hydrides for three of the four permutations. [Pg.496]

Two mechanisms have been proposed for the last step of the catalytic cycle, reaction 6 (Scheme 6.1), a direct reaction of complex 7 with H2 and a reaction of the hydride complex 1 and the acyl complex 6 or 7 to give aldehyde plus a rhodium dimer ... [Pg.214]

Reduction by nucleoi ilic attack of the original metal hydride has been own to occur under stoichiometric reaction conditions, for instance in the reduction of acyl cobalt complexes with CoH(CO) . Kinetic considerations, Imwever, make it unlikely that such a sequence plays a major role in the hydroformylaiion process. In fact, the rate-determining step, corresponding to the hydrogenolysis of the acyl complex, is slowed by an increase of carbon... [Pg.154]

Reduction of acid chlorides to aldehydes One of the most useful synthetic transformations in organic synthesis is the conversion of an acid chloride to the corresponding aldehyde without over-reduction to the alcohol. Until recently, this type of selective reduction was difficult to accomplish and was most frequently effected by catalytic hydrogenation (the Rosenmund reduction section 6.4.1). However, in the past few years, several novel reducing agents have been developed to accomplish the desired transformation. Among the reagents that are available for the partial reduction of acyl chlorides to aldehydes are bis(triphenylphosphine)cuprous borohydride , sodium or lithium tri-terf-butoxyaluminium hydride, complex copper cyanotrihydridoborate salts °, anionic iron carbonyl complexes and tri-n-butyltin hydride in the presence of tetrakis(triphenylphosphine)palladium(0). ... [Pg.240]

An unstable acyl hydride olefin complex 5 (stereochemistry not established) results from the reaction of PCHO with 0.5 equiv of [IrCl(COD)]2 ... [Pg.199]

Most transition-metal anions give hydrides by protonation at the metal, but acyl anions generally give hydroxycarbene complexes instead of acyl hydrides " ... [Pg.398]

Because the charge on the acyl anion is localized at the acyl oxygen, protonation at that oxygen can occur with little electronic rearrangement, and O-protonation is favored kinetically. It is not clear whether hydroxycarbene complexes are more stable than acyl hydrides. ... [Pg.398]


See other pages where Acyl hydride complexes is mentioned: [Pg.164]    [Pg.41]    [Pg.165]    [Pg.165]    [Pg.70]    [Pg.277]    [Pg.295]    [Pg.298]    [Pg.300]    [Pg.49]    [Pg.127]    [Pg.254]    [Pg.436]    [Pg.456]    [Pg.164]    [Pg.25]    [Pg.329]    [Pg.40]    [Pg.302]    [Pg.308]    [Pg.41]    [Pg.96]    [Pg.96]    [Pg.659]    [Pg.195]    [Pg.196]    [Pg.528]   
See also in sourсe #XX -- [ Pg.298 ]




SEARCH



Acyl complexes

Acylation Acyl complexes

© 2024 chempedia.info