Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyl halides complexes

Homing and Muchowski have recently presented a modification of the general procedures described above. In an attempt to replace selectively the acyl halogen in 48 with azide ion, these authors examined the reactions of dimethylformamide-acyl halide complexes (49) with nucleophiles (equation 35). The site of attack of a nucleophile on the ambident cation (49) is markedly influenced by the nature of the solvent and the temperature. Control reactions with aniline as the nucleophile enabled the optimum conditions for attack at the acyl carbon atom to be elucidated. With azide ion under these conditions, acyl azides were obtained in 60-100% yield (based on... [Pg.87]

Aromatic acyl halides and sulfonyl halides undergo oxidative addition, followed by facile elimination of CO and SO2 to form arylpalladium complexes. Benzenediazonium salts are the most reactive source of arylpalladium complexes. [Pg.127]

Acyl halides react with organometallic reagents without catalysts, but sometimes the Pd-catalyzed reactions give higher yields and selectivity than the Lincatalyzed reactions. Acyl halides react with Pd(0) to form the acylpalladium complexes 846, which undergo facile transmetallation. [Pg.253]

The Pd-catalyzed hydrogenoiysis of acyl chlorides with hydrogen to give aldehydes is called the Rosenmund reduction. Rosenmund reduction catalyzed by supported Pd is explained by the formation of an acylpalladium complex and its hydrogenolysis[744]. Aldehydes can be obtained using other hydrides. For example, the Pd-catalyzed reaction of acyl halides with tin hydride gives aldehydes[745]. This is the tin Form of Rosenmund reduction. Aldehydes are i ormed by the reaction of the thio esters 873 with hydrosilanes[746,747]. [Pg.257]

The acylpalladium complex formed from acyl halides undergoes intramolecular alkene insertion. 2,5-Hexadienoyl chloride (894) is converted into phenol in its attempted Rosenmund reduction[759]. The reaction is explained by the oxidative addition, intramolecular alkene insertion to generate 895, and / -elimination. Chloroformate will be a useful compound for the preparation of a, /3-unsaturated esters if its oxidative addition and alkene insertion are possible. An intramolecular version is known, namely homoallylic chloroformates are converted into a-methylene-7-butyrolactones in moderate yields[760]. As another example, the homoallylic chloroformamide 896 is converted into the q-methylene- -butyrolactams 897 and 898[761]. An intermolecular version of alkene insertion into acyl chlorides is known only with bridgehead acid chlorides. Adamantanecarbonyl chloride (899) reacts with acrylonitrile to give the unsaturated ketone 900[762],... [Pg.260]

Appaiendy a molai equivalent of catalyst (AlCl ) combines with the acyl halide, giving a 1 1 addition compound, which then acts as the active acylating agent. Reaction with aromatics gives the AlCl complex of the product ketone hberating HX ... [Pg.557]

Friedel-Crafts acylation usually involves the reaction of an acyl halide, a Lewis acid catalyst, and the aromatic substrate. Several species may function as the active electrophile, depending on the reactivity of the aromatic compound. For activated aromatics, the electrophile can be a discrete positively charged acylium ion or the complex formed... [Pg.583]

The formation of acyl halide-Lewis acid complexes have been observed by several methods. For example, both 1 1 and 1 2 complexes of acetyl chloride, with AICI3 can be observed by NMR spectroscopy. The existence of acylium ions has been demonstrated by X-ray diffraction studies on crystalline salts. For example, crystal structure determinations have been reported for /i-methylphenylacylium and acetylium ions as SbFg salts. There is also a good deal of evidence from NMR measurements which demonstrates that acylium ions can exist in nonnucleophilic solvents. " The positive charge on acylium ions is delocalized onto the oxygen atom. This delocalization is demonstrated in particular by the short O—C bond lengths in acylium ions, which imply a major contribution from the structure having a triple bond ... [Pg.584]

Lehn s approach is slightly more complex than that illustrated above in that the diol is chloromethylated and then treated with cyanide. Hydrolysis then affords the diacid which may be carried through as shown. It should also be noted that once the bis-acyl halide is in hand, it may be treated directly with an open-chained amine to yield a lipophilic diazacrown, after reduction ... [Pg.351]

Codeposition of silver vapor with perfluoroalkyl iodides at -196 °C provides an alternative route to nonsolvated primary perfluoroalkylsilvers [272] Phosphine complexes of trifluaromethylsilver are formed from the reaction of trimethyl-phosphme, silver acetate, and bis(trifluoromethyl)cadmium glyme [755] The per-fluoroalkylsilver compounds react with halogens [270], carbon dioxide [274], allyl halides [270, 274], mineral acids and water [275], and nitrosyl chloride [276] to give the expected products Oxidation with dioxygen gives ketones [270] or acyl halides [270] Sulfur reacts via insertion of sulfur into the carbon-silver bond [270] (equation 188)... [Pg.716]

As acylating agent, a carboxylic anhydride may be used instead of the acyl halide. The reaction then yields the arylketone together with a carboxylic acid, each of which forms a complex with the Lewis acid used. The catalyst therefore has to be employed in at least twofold excess ... [Pg.118]

Friedel-Crafts acylation reactions usually involve the interaction of an aromatic compound with an acyl halide or anhydride in the presence of a catalyst, to form a carbon-carbon bond [74, 75]. As the product of an acylation reaction is less reactive than its starting material, monoacylation usually occurs. The catalyst in the reaction is not a true catalyst, as it is often (but not always) required in stoichiometric quantities. For Friedel-Crafts acylation reactions in chloroaluminate(III) ionic liquids or molten salts, the ketone product of an acylation reaction forms a strong complex with the ionic liquid, and separation of the product from the ionic liquid can be extremely difficult. The products are usually isolated by quenching the ionic liquid in water. Current research is moving towards finding genuine catalysts for this reaction, some of which are described in this section. [Pg.203]

Brown and Jensen395 suggested that the rate equation (194) for the reaction of benzene with excess benzoyl chloride could be interpreted according to the mechanisms given by the reactions (201) and (202), (203) and (204) and (205) and (206) which refer to nucleophilic attack of the aromatic upon the polarised acyl halide-catalyst complex, upon the free acylium ion, and upon an ion pair derived from the acyl halide-catalyst complex, viz. [Pg.174]

Treatment of Na2pe(CO)4 with an alkyl halide in the presence of CO results in an acylated iron complex (143) that can be isolated.Treatment of this with a second alkyl halide gives a ketone. [Pg.563]

Unsymmetrical oc-diketones RCOCOR have been prepared by treatment of an acyl halide RCOCl with an acyltin reagent R COSnBus, with a palladium complex catalyst. [Pg.569]

Alkenes can be acylated with an acyl halide and a Lewis acid catalyst in what is essentially a Friedel-Crafts reaction at an aliphatic carbon. ° The product can arise by two paths. The initial attack is by the acyl cation RCO (or by the acyl halide free or complexed see 11-14) at the double bond to give a carbocation ... [Pg.784]

Rhodium(I) complexes are effective reagents and/or catalysts for the decarbonylation of acyl halides and aldehydes 9 11,34,195,230,231,236). The compound Rh(PPh3)3Cl, especially, has received considerable attention. The first step in such reactions involves oxidative addition to Rh(I) of the organic molecule, exemplified by the following ... [Pg.134]

The reaction may be reasonably explained by the smooth oxidative addition of benzylic and acyl halides to nickel to afford benzylnickel halides and acylnickel halides. The metathesis of these complexes could give the acylbenzylnickel complex, which upon reductive elimination would yield the benzyl ketone. [Pg.232]

Friedel-Crafts acylation reactions of aromatics are promoted by Tilv complexes.104 In some cases, a catalytic amount of the titanium compound works well (Scheme 28). In addition to acyl halides or acid anhydrides, aldehydes, ketones, and acetals can serve as electrophile equivalents for this reaction.105 The formylation of aromatic substrates in the presence of TiCl4 is known as the Rieche-Gross formylation metalated aromatics or olefins are also formylated under these conditions.106... [Pg.411]

Note that this reaction can also be used for the preparation of complexes with mixed substituents if the alkylating agent has a different group. Such complexes have also been generated by ring cleavage of trinuclear complexes, for example, with acyl halides (Equation (47)).2... [Pg.289]

The carbonylation was explained by the following mechanism. Formation of dimeric 7r-allylic complex 20 from two moles of butadiene and the halide-free palladium species is followed by carbon monoxide insertion at the allylic position to give an acyl palladium complex which then collapses to give 3,8-nonadienoate by the attack of alcohol with regeneration of the zero-valent palladium phosphine complex. When halide ion is coordinated to palladium, the formation of the above dimeric 7r-allylic complex 20 is not possible, and only monomeric 7r-allylic complex 74 is formed. Carbon monoxide insertion then gives 3-pentenoate (72). [Pg.166]

An intermediate acylnickel halide is first formed by oxidative addition of acyl halides to zero-valent nickel. This intermediate can attack unsaturated ligands with subsequent proton attack from water. It can give rise to benzyl- or benzoin-type coupling products, partially decarbonylate to give ketones, or react with organic halides to give ketones as well. Protonation of certain complexes can give aldehydes. Nickel chloride also acts as catalyst for Friedel-Crafts-type reactions. [Pg.222]

Acyl fluoride-Lewis acid complexes, 12 176 Acyl groups, systematic names of, 17 398 Acyl halides... [Pg.15]

ACID ANHYDRIDES, ACYL HALIDES, ALKALI METALS ALKYLALUMINIUM DERIVATIVES, ALKYLNON-METAL HALIDES COMPLEX HYDRIDES, METAL HALIDES, METAL HYDRIDES METAL OXIDES, NON-METAL HALIDES (AND THEIR OXIDES)... [Pg.417]

Fig. 2.4. Generation and O-alkylation of nucleophilic acyl complexes from metallates and acyl halides [101]. Fig. 2.4. Generation and O-alkylation of nucleophilic acyl complexes from metallates and acyl halides [101].
The most frequently used ylides for carbene-complex generation are acceptor-substituted diazomethanes. As already mentioned in Section 3.1.3.1, non-acceptor-substituted diazoalkanes are strong C-nucleophiles, easy to convert into carbene complexes with a broad variety of transition metal complexes. Acceptor-substituted diazomethanes are, however, less nucleophilic (and more stable) than non-acceptor-substituted diazoalkanes, and require catalysts of higher electrophilicity to be efficiently decomposed. Not surprisingly, the very stable bis-acceptor-substituted diazomethanes can be converted into carbene complexes only with strongly electrophilic catalysts. This order of reactivity towards electrophilic transition metal complexes correlates with the reactivity of diazoalkanes towards other electrophiles, such as Brpnsted acids or acyl halides. [Pg.172]


See other pages where Acyl halides complexes is mentioned: [Pg.6]    [Pg.147]    [Pg.883]    [Pg.236]    [Pg.171]    [Pg.171]    [Pg.172]    [Pg.173]    [Pg.181]    [Pg.566]    [Pg.567]    [Pg.192]    [Pg.308]    [Pg.206]    [Pg.293]    [Pg.730]    [Pg.206]    [Pg.792]    [Pg.513]    [Pg.265]    [Pg.947]    [Pg.15]    [Pg.97]   
See also in sourсe #XX -- [ Pg.540 , Pg.542 ]




SEARCH



Acyl complexes

Acyl halides Lewis acid complexes

Acylation Acyl complexes

Cobalt complexes acyl halides

Halide complexation

Halides complex

© 2024 chempedia.info