Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyl-enzyme ester intermediate

The acyl-enzyme ester intermediate must be hydrolyzed by a second reaction, in which water becomes the nucleophile. [Pg.157]

The initial evidence for the formation of an acyl-enzyme ester intermediate came from studies of the kinetics with which chymotrypsin hydrolyzed analogs of its normal polypeptide substrates. The enzyme turned out to hydrolyze esters as well as peptides and simpler amides. Of particular interest was the reaction with the ester p-nitrophenyl acetate. This substrate is well suited for kinetic studies because one of the products of its hydrolysis, p-nitrophenol, has a yellow color in aqueous solution, whereas p-nitrophenyl acetate itself is colorless. The change in the absorption spectrum makes it easy to follow the progress of the reaction. When rapid-mixing techniques are used to add the substrate to the enzyme, an initial burst of p-nitrophenol is detected within the first few seconds, before the reaction settles down to a constant rate (fig. 8.8). The amount of p-nitrophe-... [Pg.161]

The probable mechanism of action of chymotrypsin. The six panels show the initial enzyme-substrate complex (a), the first tetrahedral (oxyanion) intermediate (b), the acyl-enzyme (ester) intermediate with the amine product departing (c), the same acyl-enzyme intermediate with water entering (d), the second tetrahedral (oxyanion)... [Pg.164]

The mechanism for the lipase-catalyzed reaction of an acid derivative with a nucleophile (alcohol, amine, or thiol) is known as a serine hydrolase mechanism (Scheme 7.2). The active site of the enzyme is constituted by a catalytic triad (serine, aspartic, and histidine residues). The serine residue accepts the acyl group of the ester, leading to an acyl-enzyme activated intermediate. This acyl-enzyme intermediate reacts with the nucleophile, an amine or ammonia in this case, to yield the final amide product and leading to the free biocatalyst, which can enter again into the catalytic cycle. A histidine residue, activated by an aspartate side chain, is responsible for the proton transference necessary for the catalysis. Another important factor is that the oxyanion hole, formed by different residues, is able to stabilize the negatively charged oxygen present in both the transition state and the tetrahedral intermediate. [Pg.172]

The second example in this chapter is the carboxypeptidase A (CPA) [42, 43]. CPA is an exo-peptidase which can hydrolyze the C terminal amino acid from the peptide or ester substrates, whose X-ray structures have been reported for its native form [44, 45] or enzyme-inhibitor complex [46-51]. In addition, an X-ray stmc-mre of enzyme complexed with the proteolysis product was also reported [52]. No matter accumulation of experimental data, its reaction mechanisms still remain incompletely understood [53]. In particular, two major mechanisms, promoted-water pathway and nucleophilic pathway (traditionally it was named as anhydride pathway), using a peptide as the model substrate are depicted in Fig. 9.4. The nucleophilic pathway envisages an acyl-enzyme (AE) intermediate resulting from direct... [Pg.161]

Hydrolysis of esters and amides by enzymes that form acyl enzyme intermediates is similar in mechanism but different in rate-limiting steps. Whereas formation of the acyl enzyme intermediate is a rate-limiting step for amide hydrolysis, it is the deacylation step that determines the rate of ester hydrolysis. This difference allows elimination of the undesirable amidase activity that is responsible for secondary hydrolysis without affecting the rate of synthesis. Addition of an appropriate cosolvent such as acetonitrile, DMF, or dioxane can selectively eliminate undesirable amidase activity (128). [Pg.345]

Amide hydrolysis is common in biological chemistry. Just as the hydrolysis of esters is the initial step in the digestion of dietary fats, the hydrolysis of amides is the initial step in the digestion of dietary proteins. The reaction is catalyzed by protease enzymes and occurs by a mechanism almost identical to that we just saw for fat hydrolysis. That is, an initial nucleophilic acyl substitution of an alcohol group in the enzyme on an amide linkage in the protein gives an acyl enzyme intermediate that then undergoes hydrolysis. [Pg.815]

Catalytic site of lipase is known to be a serine-residue and lipase-catalyzed reactions are considered to proceed via an acyl-enzyme intermediate. The mechanism of lipase-catalyzed polymerization of divinyl ester and glycol is proposed as follows (Fig. 3). First, the hydroxy group of the serine residue nucleophilically attacks the acyl-carbon of the divinyl ester monomer to produce an acyl-enzyme intermediate involving elimination of acetaldehyde. The reaction of the intermediate with the glycol produces 1 1 adduct of both... [Pg.244]

X. C. Ding, B. F. Rasmussen, G. A. Petsko, D. Ringe, Direct Structural Observation of an Acyl-Enzyme Intermediate in the Hydrolysis of an Ester Substrate by Elastase , Biochemistry 1994, 33, 9285-9293. [Pg.91]

Like in Chapt. 7, we begin the discussion with acetates, since acetic acid is the simplest nontoxic acyl group, formic acid being less innocuous. An informative study was carried out to compare the kinetics of hydrolysis of two types of corticosteroid esters, namely methyl steroid-21-oates (which are active per se) and acetyl steroid-21-ols (which are prodrugs), as exemplified by methyl prednisolonate (8.69) and prednisolone-21-acetate (8.70), respectively [89]. In the presence of rat liver microsomes, the rate of hydrolytic inactivation of methyl steroid-21-oates was much slower than the rate of hydrolytic activation of acetyl steroid-21-ols. Thus, while the Km values were ca. 0.1 -0.3 mM for all substrates, the acetic acid ester prodrugs and the methyl ester drugs had Vmax values of ca. 20 and 0.15 nmol min-1 mg-1, respectively. It can be postulated that the observed rates of hydrolysis were determined by the acyl moiety, in other words by the liberation of the carboxylic acid from the acyl-enzyme intermediate (see Chapt. 3). [Pg.472]

Ding X, Rasmussen BF, Petsko GA, Ringe D. 1994. Direct structural observation of an acyl-enzyme intermediate in the hydrolysis of an ester substrate by elastase. Biochemistry 33 9285-9293. [Pg.477]

The hydrolysis of peptide bonds catalyzed by the serine proteases has been the reaction most extensively studied by low-temperature trapping experiments. The reasons for this preference are the ease of availability of substrates and purified enzymes, the stability of the proteins to extremes of pH, temperature, and organic solvent, and the existence of a well-characterized covalent acyl-enzyme intermediate. Both amides and esters are substrates for the serine proteases, and a number of chromo-phoric substrates have been synthesized to simplify assay by spectrophotometric techniques. [Pg.256]

N-Carbobenzoxy-L-alanine-/>-nitrophenyl ester is a specific substrate for elastase in which the rate-limiting step is deacylation, that is, hydrolysis of the acyl-enzyme intermediate. In 70% methanol over a reasonable temperature range the energy of activation of the turnover reaction, that is, deacylation, is 15.4 kcal mol. In the pH 6-7 region in this cryoprotective solvent, the turnover reacdon can be made negligibly slow at temperatures of -50 C or below. Under such conditions/i-nitro-phenol is released concurrent to acyl enzyme formation in a 1 1 stoichiometry with active enzyme in the presence of excess substrate. In other words, even at low temperatures, the acylation rate is much faster than deacylation and the acyl enzyme will accumulate on the enzyme. The rate of acyl-enzyme formation can be monitored by following the rate of p-nitrophenol release, and thus the concentration of trapped acyl enzyme may be determined. This calculadon has been carried out and... [Pg.256]

The presence of a covalent acyl-enzyme intermediate in the catalytic reaction of the serine proteases made this class of enzymes an attractive candidate for the initial attempt at using subzero temperatures to study an enzymatic mechanism. Elastase was chosen because it is easy to crystallize, diffracts to high resolution, has an active site which is accessible to small molecules diffusing through the crystal lattice, and is stable in high concentrations of cryoprotective solvents. The strategy used in the elastase experiment was to first determine in solution the exact conditions of temperature, organic solvent, and proton activity needed to stabilize an acyl-enzyme intermediate for sufficient time for X-ray data collection, and then to prepare the complex in the preformed, cooled crystal. Solution studies were carried out in the laboratory of Professor A. L. Fink, and were summarized in Section II,A,3. Briefly, it was shown that the chromophoric substrate -carbobenzoxy-L-alanyl-/>-nitrophenyl ester would react with elastase in both solution and in crystals in 70 30 methanol-water at pH 5.2 to form a productive covalent complex. These... [Pg.330]

Unfortunately, the size of the crystallographic problem presented by elastase coupled with the relatively short lifedme of the acyl-enzyme indicated that higher resolution X-ray data would be difficult to obtain without use of much lower temperatures or multidetector techniques to increase the rate of data acquisition. However, it was observed that the acyl-enzyme stability was a consequence of the known kinetic parameters for elastase action on ester substrates. Hydrolysis of esters by the enzyme involves both the formation and breakdown of the covalent intermediate, and even in alcohol-water mixtures at subzero temperatures the rate-limidng step is deacylation. It is this step which is most seriously affected by temperature, allowing the acyl-enzyme to accumulate relatively rapidly at — 55°C but to break down very slowly. Amide substrates display different kinetic behavior the slow step is acylation itself. It was predicted that use of a />-nitrophenyl amid substrate would give the structure of the pre-acyl-enzyme Michaelis complex or even the putadve tetrahedral intermediate (Alber et ai, 1976), but this experiment has not yet been carried out. Instead, over the following 7 years, attention shifted to the smaller enzyme bovine pancreatic ribonuclease A. [Pg.332]

An enzyme reaction intermediate (Enz—O—C(0)R or Enz—S—C(O)R), formed by a carboxyl group transfer (e.g., from a peptide bond or ester) to a hydroxyl or thiol group of an active-site amino acyl residue of the enzyme. Such intermediates are formed in reactions catalyzed by serine proteases transglutaminase, and formylglyci-namide ribonucleotide amidotransferase . Acyl-enzyme intermediates often can be isolated at low temperatures, low pH, or a combination of both. For acyl-seryl derivatives, deacylation at a pH value of 2 is about 10 -fold slower than at the optimal pH. A primary isotope effect can frequently be observed with a C-labeled substrate. If an amide substrate is used, it is possible that a secondary isotope effect may be observed as welF. See also Active Site Titration Serpins (Inhibitory Mechanism)... [Pg.29]

In lipase-catalyzed ROP, it is generally accepted that the monomer activation proceeds via the formation of an acyl-enzyme intermediate by reaction of the Ser residue with the lactone, rendering the carbonyl more prone to nucleophilic attack (Fig. 3) [60-64, 94]. Initiation of the polymerization occurs by deacylation of the acyl-enzyme intermediate by an appropriate nucleophile such as water or an alcohol to produce the corresponding co-hydroxycarboxylic acid or ester. Propagation, on the other hand, occurs by deacylation of the acyl-enzyme intermediate by the terminal hydroxyl group of the growing polymer chain to produce a polymer chain that is elongated by one monomer unit. [Pg.60]

Figure 2.11 Transesterification of a racemic mixture of a secondary alcohol (1 -phenoxy-2-propanol, 1 in Table 2.1) with a butanoic acyl donor follows a ping-pong bi-bi mechanism in which Substrate 1 (acyl donor) enters the enzyme, forms an acyl enzyme expelling Product 1 (the leaving alcohol from the acyl donor). Then another Substrate 2 (the enantiomers of the alcohol to be resolved) reacts with the acyl enzyme to liberate Product 2 (the enantiomers of the produced esters), leaving the enzyme in its original form. In a kinetic resolution one of the enantiomeric alcohols reacts faster than the other to form an excess of one enantiomer of the esters (ideally enantiopure, for 1 the (R)-ester was formed with very high ee). The success of the resolution is expressed by the enantiomeric ratio E, which depends on the difference in free energy of activation of the two diastereomeric transition states. These are in turn related to the two tetrahedral intermediates. Figure 2.11 Transesterification of a racemic mixture of a secondary alcohol (1 -phenoxy-2-propanol, 1 in Table 2.1) with a butanoic acyl donor follows a ping-pong bi-bi mechanism in which Substrate 1 (acyl donor) enters the enzyme, forms an acyl enzyme expelling Product 1 (the leaving alcohol from the acyl donor). Then another Substrate 2 (the enantiomers of the alcohol to be resolved) reacts with the acyl enzyme to liberate Product 2 (the enantiomers of the produced esters), leaving the enzyme in its original form. In a kinetic resolution one of the enantiomeric alcohols reacts faster than the other to form an excess of one enantiomer of the esters (ideally enantiopure, for 1 the (R)-ester was formed with very high ee). The success of the resolution is expressed by the enantiomeric ratio E, which depends on the difference in free energy of activation of the two diastereomeric transition states. These are in turn related to the two tetrahedral intermediates.
In this reaction an acyl-enzyme is formed as a reactive intermediate. This is deacylated in a nucleophilic attack on the carbonyl carbon atom in the ester linkage of the acylenzyme (Enz-0-C0-CH2Ph) by H2O or other nucleophiles (R -OH R -NH2). [Pg.367]

In the kinetically controlled synthesis, an activated acyl donor (ester, amide, or anhydride) is used to form an acyl-enzyme intermediate. [Pg.283]

Chymotrypsin enhances the rate of peptide bond hydrolysis by a factor of at least 109. It does not catalyze a direct attack of water on the peptide bond instead, a transient covalent acyl-enzyme intermediate is formed. The reaction thus has two distinct phases. In the acylation phase, the peptide bond is cleaved and an ester linkage is formed between the peptide carbonyl carbon and the enzyme. In the deacylation phase, the ester linkage is hydrolyzed and the nonacylated enzyme regenerated. [Pg.213]


See other pages where Acyl-enzyme ester intermediate is mentioned: [Pg.131]    [Pg.132]    [Pg.46]    [Pg.296]    [Pg.357]    [Pg.84]    [Pg.172]    [Pg.214]    [Pg.359]    [Pg.362]    [Pg.32]    [Pg.245]    [Pg.251]    [Pg.238]    [Pg.257]    [Pg.330]    [Pg.523]    [Pg.31]    [Pg.329]    [Pg.60]    [Pg.296]    [Pg.150]    [Pg.278]    [Pg.129]    [Pg.217]    [Pg.625]    [Pg.296]    [Pg.94]    [Pg.161]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



Acyl esters

Acyl intermediate

Acyl-enzyme intermediates

Acylation enzymic

Acylic Intermediates

Enzyme acylation

Esters acylation

Intermediate esters

© 2024 chempedia.info