Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyl enzyme

Mechanistic studies (6,26,27,67) have shown that the acyl enzyme species is the ring opened compound (13), which can tautomerize to the transientiy inhibited amino acrylate (14), and both of these species can react further to give irreversibly inactivated enzyme. Three inactivated forms of the enzyme have been detected. Two, according to labeling studies, retain the complete clavulanate skeleton and the other retains only the carbon chain of the P-lactam ring. Stmcture (15) has been suggested as one possible inactivated form. [Pg.47]

R = an aromatic moiety, = H, and R" = R" = CH ), which were expected to have a long-hved acyl enzyme species (26) that would react further to give inactivated enzyme. The compounds all act as P-lactamase inhibitors but they are poor synergists. Aged solutions of c1oxaci11in sulfone, where... [Pg.52]

The transformations described thus far were catalyzed by enzymes in their traditional hydrolytic mode. More recent developments in the area of enzymatic catalysis in nonaqueous media (11,16,33—35) have significantly broadened the repertoire of hydrolytic enzymes. The acyl—enzyme intermediate formed in the first step of the reaction via acylation of the enzyme s active site nucleophile can be deacylated in the absence of water by a number of... [Pg.334]

Hydrolysis of esters and amides by enzymes that form acyl enzyme intermediates is similar in mechanism but different in rate-limiting steps. Whereas formation of the acyl enzyme intermediate is a rate-limiting step for amide hydrolysis, it is the deacylation step that determines the rate of ester hydrolysis. This difference allows elimination of the undesirable amidase activity that is responsible for secondary hydrolysis without affecting the rate of synthesis. Addition of an appropriate cosolvent such as acetonitrile, DMF, or dioxane can selectively eliminate undesirable amidase activity (128). [Pg.345]

Espenson gives examples from inorganic chemistry Jencks describes enzyme-catalyzed reactions in which the common intermediate is an acylated enzyme... [Pg.119]

FIGURE 16.21 Burst kinetics observed iu the chymotrypsiii reaction. A burst of nitrophe-nolate production is followed by a slower, steady-state release. After an initial lag period, acetate release is also observed. This kinetic pattern is consistent with rapid formation of an acyl-enzyme intermediate (and the burst of nitrophenolate). The slower, steady-state release of products corresponds to rate-limiting breakdown of the acyl-enzyme intermediate. [Pg.516]

In the chymotrypsiii mechanism, the nitrophenylacetate combines with the enzyme to form an ES complex. This is followed by a rapid second step in which an acyl-enzyme intermediate is formed, with the acetyl group covalently bound to the very reactive Ser . The nitrophenyl moiety is released as nitrophenolate (Figure 16.22), accounting for the burst of nitrophenolate product. Attack of a water molecule on the acyl-enzyme intermediate yields acetate as the second product in a subsequent, slower step. The enzyme is now free to bind another molecule of nitrophenylacetate, and the nitrophenolate product produced at this point corresponds to the slower, steady-state formation of product in the upper right portion of Figure 16.21. In this mechanism, the release of acetate is the rate-llmitmg step, and accounts for the observation of burst kinetics—the pattern shown in Figure 16.21. [Pg.516]

FIGURE 16.22 Rapid formation of the acyl-enzyme intermediate is followed by slower product release. [Pg.516]

Transition-state stabilization in chymotrypsin also involves the side chains of the substrate. The side chain of the departing amine product forms stronger interactions with the enzyme upon formation of the tetrahedral intermediate. When the tetrahedral intermediate breaks down (Figure 16.24d and e), steric repulsion between the product amine group and the carbonyl group of the acyl-enzyme intermediate leads to departure of the amine product. [Pg.519]

FIGURE 16.26 Acyl-enzyme and amino-enzyme intermediates originally proposed for aspartic proteases were modeled after the acyl-enzyme intermediate of the serine proteases. [Pg.521]

Amide hydrolysis is common in biological chemistry. Just as the hydrolysis of esters is the initial step in the digestion of dietary fats, the hydrolysis of amides is the initial step in the digestion of dietary proteins. The reaction is catalyzed by protease enzymes and occurs by a mechanism almost identical to that we just saw for fat hydrolysis. That is, an initial nucleophilic acyl substitution of an alcohol group in the enzyme on an amide linkage in the protein gives an acyl enzyme intermediate that then undergoes hydrolysis. [Pg.815]

The tetrahedral intermediate expels a diacylglycerol as the leaving group and produces an acyl enzyme. The step is catalyzed by a proton transfer from histidine to make the leaving group a neutral alcohol. [Pg.1130]

Steps 3-4 of Figure 29.2 Hydrolysis The second nucleophilic acyl substitution step hydrolyzes the acyl enzyme and gives the free fatty acid by a mechanism analogous to that of the first two steps. Water is deprotonated by histidine to give hydroxide ion, which adds to the enzyme-bound acyl group. The tetrahedral... [Pg.1130]

This intermediate expels a dtacylglycerol as leaving group in a nucleophilic acyl substitution reaction, giving an acyl enzyme. The dtacylglycerol is protonated by the histidine cation. [Pg.1131]

In our discussion of the diversification of the fMactams, we explained how acylases and acylating enzymes may be used in the production of modified (semi-synthetic) P-lactams. However, the potential of using enzymes to modify oiganic molecules is much wider than this. [Pg.185]

Lipases have also been used as initiators for the polymerization of lactones such as /3-bu tyro lac tone, <5-valerolactone, e-caprolactone, and macrolides.341,352-357 In this case, the key step is the reaction of lactone with die serine residue at the catalytically active site to form an acyl-enzyme hydroxy-terminated activated intermediate. This intermediate then reacts with the terminal hydroxyl group of a n-mer chain to produce an (n + i)-mer.325,355,358,359 Enzymatic lactone polymerization follows a conventional Michaelis-Menten enzymatic kinetics353 and presents a controlled character, without termination and chain transfer,355 although more or less controlled factors, such as water content of the enzyme, may affect polymerization rate and the nature of endgroups.360... [Pg.84]

The first step, which is called the acylation reaction, involves a formation of an acyl-enzyme where the RC(0 )X group is covalently bound to the specially active serine residue and the XH group is expelled from the active site. The second step, which is called the deacylation step, involves an attack of an HY group on the acyl-enzyme. Here we concentrate on the acylation step which is the reverse of the second step when X and Y are identical. [Pg.171]

The mechanism for the lipase-catalyzed reaction of an acid derivative with a nucleophile (alcohol, amine, or thiol) is known as a serine hydrolase mechanism (Scheme 7.2). The active site of the enzyme is constituted by a catalytic triad (serine, aspartic, and histidine residues). The serine residue accepts the acyl group of the ester, leading to an acyl-enzyme activated intermediate. This acyl-enzyme intermediate reacts with the nucleophile, an amine or ammonia in this case, to yield the final amide product and leading to the free biocatalyst, which can enter again into the catalytic cycle. A histidine residue, activated by an aspartate side chain, is responsible for the proton transference necessary for the catalysis. Another important factor is that the oxyanion hole, formed by different residues, is able to stabilize the negatively charged oxygen present in both the transition state and the tetrahedral intermediate. [Pg.172]


See other pages where Acyl enzyme is mentioned: [Pg.15]    [Pg.813]    [Pg.339]    [Pg.204]    [Pg.204]    [Pg.22]    [Pg.46]    [Pg.46]    [Pg.53]    [Pg.296]    [Pg.208]    [Pg.208]    [Pg.208]    [Pg.208]    [Pg.495]    [Pg.509]    [Pg.517]    [Pg.520]    [Pg.521]    [Pg.810]    [Pg.810]    [Pg.815]    [Pg.1130]    [Pg.1130]    [Pg.1131]    [Pg.1132]    [Pg.357]    [Pg.84]    [Pg.172]    [Pg.29]    [Pg.173]    [Pg.403]   
See also in sourсe #XX -- [ Pg.318 ]

See also in sourсe #XX -- [ Pg.99 ]

See also in sourсe #XX -- [ Pg.53 ]

See also in sourсe #XX -- [ Pg.337 , Pg.338 , Pg.343 , Pg.398 ]

See also in sourсe #XX -- [ Pg.342 , Pg.343 , Pg.344 , Pg.345 , Pg.346 , Pg.347 , Pg.348 , Pg.349 ]




SEARCH



Acylation enzymic

Enzyme acylation

© 2024 chempedia.info