Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acylation with acyl chlorides

Acylation of ester enolates can also be carried out with more reactive acylating agents such as acid anhydrides and acyl chlorides. These reactions must be done in inert solvents to avoid solvolysis of the acylating agent. The preparation of diethyl benzoylmalonate (entry 1 in Scheme 2.14) is an example employing an acid anhydride. Entries 2-5 illustrate the use of acyl chlorides. Acylations with these more reactive compounds can be complicated by competing O-acylation. /V-Mcthoxy-iV-methylamidcs are also useful for acylation of ester enolates. [Pg.105]

Acyl halides, both aliphatic and aromatic, react with the sodium derivative, but the product depends largely on the solvent used. Thus acetyl chloride reacts with the sodium derivative (E) suspended in ether to give mainly the C-derivative (t) and in pyridine solution to give chiefly the O-derivative (2). These isomeric compounds can be readily distinguished, because the C-derivative (1) can still by enolisation act as a weak acid and is therefore... [Pg.270]

Chiral 2-oxazolidones are useful recyclable auxiliaries for carboxylic acids in highly enantioselective aldol type reactions via the boron enolates derived from N-propionyl-2-oxazolidones (D.A. Evans, 1981). Two reagents exhibiting opposite enantioselectivity ate prepared from (S)-valinol and from (lS,2R)-norephedrine by cyclization with COClj or diethyl carbonate and subsequent lithiation and acylation with propionyl chloride at — 78°C. En-olization with dibutylboryl triflate forms the (Z)-enolates (>99% Z) which react with aldehydes at low temperature. The pure (2S,3R) and (2R,3S) acids or methyl esters are isolated in a 70% yield after mild solvolysis. [Pg.61]

Cydopentane reagents used in synthesis are usually derived from cyclopentanone (R.A. Ellison, 1973). Classically they are made by base-catalyzed intramolecular aldol or ester condensations (see also p. 55). An important example is 2-methylcydopentane-l,3-dione. It is synthesized by intramolecular acylation of diethyl propionylsucdnate dianion followed by saponification and decarboxylation. This cyclization only worked with potassium t-butoxide in boiling xylene (R. Bucourt, 1965). Faster routes to this diketone start with succinic acid or its anhydride. A Friedel-Crafts acylation with 2-acetoxy-2-butene in nitrobenzene or with pro-pionyl chloride in nitromethane leads to acylated adducts, which are deacylated in aqueous acids (V.J. Grenda, 1967 L.E. Schick, 1969). A new promising route to substituted cyclopent-2-enones makes use of intermediate 5-nitro-l,3-diones (D. Seebach, 1977). [Pg.81]

The Pd-catalyzed coupling of an acyl chloride with benzyl chloride to form the benzyl ketone 854 proceeds in the presence of an excess of Zn. In this reaction, benzyl chloride reacts with Zn to form benzylzinc, which undergoes transmetallation with acylpaliadium complex[729]. The reaction has been applied to the synthesis of riccardin B (855)[730]. [Pg.255]

Acyl halides are intermediates of the carbonylations of alkenes and organic-halides. Decarbonylation of acyl halides as a reversible process of the carbo-nylation is possible with Pd catalyst. The decarbonylation of aliphatic acid chlorides proceeds with Pd(0) catalyst, such as Pd on carbon or PdC, at around 200 °C[109,753]. The product is a mixture of isomeric internal alkenes. For example, when decanoyl chloride is heated with PdCF at 200 C in a distillation flask, rapid evolution of CO and HCl stops after I h, during which time a mixture of nonene isomers was distilled off in a high yield. The decarbonylation of phenylpropionyl chloride (883) affords styrene (53%). In addition, l,5-diphenyl-l-penten-3-one (884) is obtained as a byproduct (10%). formed by the insertion of styrene into the acyl chloride. Formation of the latter supports the formation of acylpalladium species as an intermediate of the decarbonylation. Decarbonylation of the benzoyl chloride 885 can be carried out in good yields at 360 with Pd on carbon as a catalyst, yielding the aryl chloride 886[754]. [Pg.258]

These acylating agents are the most commonly used (246). Acid chlorides react with 5-nitro-2-aminothiazoIe (88) despite the deactivating effect of the nitro group (Scheme 61) (247), but more vigorous conditions are required (248). [Pg.48]

Esterification with acyl chlorides (Section 15 8) Acyl chlorides react with alcohols to give esters The reaction is usually carried out in the presence of pyridine... [Pg.656]

Thionyl chloride reacts with carboxylic acids to yield acyl chlorides... [Pg.810]

Acyl chlorides react with carboxylic acids to yield acid anhydrides When this reaction is used for preparative purposes a weak organic base such as pyridine is normally added Pyridine is a catalyst for the reaction and also acts as a base to neutralize the hydrogen chloride that is formed... [Pg.839]

Reaction with ammonia and amines (Sec tion 20 14) Acyl chlorides react with am monia and amines to form amides A base such as sodium hydroxide is normally added to react with the hydrogen chio ride produced... [Pg.839]

Hydrolysis (Section 20 4) Acyl chlorides react with water to yield carboxylic acids In base the acid is converted to its carbox ylate salt The reaction has little prepara tive value because the acyl chloride is nearly always prepared from the carboxyl ic acid rather than vice versa... [Pg.839]

Section 20 7 Esters occur naturally or are prepared from alcohols by Fischer estenfi cation or by acylation with acyl chlorides or acid anhydrides (see Table 20 3)... [Pg.876]

Direct nitration of aniline and other arylamines fails because oxidation leads to the formation of dark colored tars As a solution to this problem it is standaid practice to first protect the ammo group by acylation with either acetyl chloride or acetic anhydride... [Pg.940]

Polystyrene can be cross-linked by its acylation with bifunctional acylating agents such as adipoyl, sebacoyl, or malonyl chlorides ia the presence of AlCl iu CS2 solution at 0°C (106). [Pg.559]

Sulfonylation. Under Friedel-Crafts reaction conditions, sulfonyl haUdes and sulfonic acid anhydrides sulfonylate aromatics (139), a reaction that can be considered the analogue of the related acylation with acyl haUdes and anhydrides. The products are sulfones. Sulfonyl chlorides are the most frequently used reagents, although the bromides and fluorides also react ... [Pg.560]

Other unsymmetrical peroxides can be prepared by this reaction by employing other acylating agents, eg, alkyl chloroformates, organosulfonyl chlorides, and carbamoyl chlorides (210). Unsymmetrical and symmetrical di(diacyl peroxides) also are obtained by the reaction of dibasic acid chlorides directiy with peroxycarboxyhc acids or monoacid chlorides directiy with diperoxycarboxyhc acids in the presence of a base (44,187,203). [Pg.125]

In the piepaiation of ioveisol (12) (41), the key intermediate (23) is prepared from the diacid (20) by the action of thionyl chloride followed by 3-amino-l,2-propanediol. The alcohol groups of (23) are protected as the acetates (25), which is then N-acylated with acetoxyacetyl chloride and deprotected in aqueous methanol with sodium hydroxide to yield (26). N-alkylation of (26) produces ioversol (12). [Pg.465]

Triazoles are acylated with acyl halides, usually initially at the 1-position, but the acyl group may migrate to the 2-position on heating or on treatment with base. Thus acetylation with acetyl chloride often gives 1-acetyl derivatives, which rearrange to the 2-isomers above 120 °C (74AHCil6)33). [Pg.54]

The 17-hydroxy group of 2,3-epithiosteroids and the hydroxy groups of some epi-thiosugars may be acylated with acid anhydrides or chlorides without affecting the episulfide (77CPB1140). [Pg.171]

It should be noted that the host structures were prepared from the simple monoazacrowns by acylating with a bis-acid chloride followed by hydride reduction. [Pg.159]

In their original communication on the alkylation and acylation of enamines, Stork et al. (3) had reported that the pyrrolidine enamine of cyclohexanone underwent monoacylation with acid chlorides. For example, the acylation with benzoyl chloride led to monobenzoylcyclohexanone. However, Hunig and Lendle (33) found that treatment of the morpholine enamine of cyclopentanone with 2 moles of propionyl chloride followed by acid hydrolysis gave the enol ester (56), which was proposed to have arisen from the intermediate (55). [Pg.20]


See other pages where Acylation with acyl chlorides is mentioned: [Pg.725]    [Pg.49]    [Pg.486]    [Pg.401]    [Pg.557]    [Pg.561]    [Pg.383]    [Pg.184]    [Pg.157]    [Pg.465]    [Pg.427]    [Pg.251]    [Pg.585]    [Pg.486]    [Pg.135]    [Pg.137]    [Pg.138]   
See also in sourсe #XX -- [ Pg.609 , Pg.614 ]




SEARCH



Acyl chlorides

Acylation acyl chlorides

© 2024 chempedia.info