Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activator methyl iodide

The amino group activates the thiazole ring toward electrophilic centers. This point is illustrated by the rate constants of the reaction between 2-dialkylaminothiazoles (32) and methyl iodide in nitromethane at 25 C (Scheme 23) (158). The steric effects of substituents on nitrogen are... [Pg.32]

TABLE ra-54. RATE AND ACTIVATION CONSTANTS FOR THE REACTION OF 5-ALKYLTHlAZOLES WITH METHYL IODIDE IN NITROBENZENE. (254). [Pg.391]

Acetyl chlotide is reduced by vatious organometaUic compounds, eg, LiAlH (18). / fZ-Butyl alcohol lessens the activity of LiAlH to form lithium tti-/-butoxyalumium hydtide [17476-04-9] C22H2gA102Li, which can convert acetyl chlotide to acetaldehyde [75-07-0] (19). Triphenyl tin hydtide also reduces acetyl chlotide (20). Acetyl chlotide in the presence of Pt(II) or Rh(I) complexes, can cleave tetrahydrofuran [109-99-9] C HgO, to form chlorobutyl acetate [13398-04-4] in about 72% yield (21). Although catalytic hydrogenation of acetyl chlotide in the Rosenmund reaction is not very satisfactory, it is catalyticaHy possible to reduce acetic anhydride to ethylidene diacetate [542-10-9] in the presence of acetyl chlotide over palladium complexes (22). Rhodium trichloride, methyl iodide, and ttiphenylphosphine combine into a complex that is active in reducing acetyl chlotide (23). [Pg.81]

To prevent such release, off gases are treated in Charcoal Delay Systems, which delay the release of xenon and krypton, and other radioactive gases, such as iodine and methyl iodide, until sufficient time has elapsed for the short-Hved radioactivity to decay. The delay time is increased by increasing the mass of adsorbent and by lowering the temperature and humidity for a boiling water reactor (BWR), a typical system containing 211 of activated carbon operated at 255 K, at 500 K dewpoint, and 101 kPa (15 psia) would provide about 42 days holdup for xenon and 1.8 days holdup for krypton (88). Humidity reduction is typically provided by a combination of a cooler-condenser and a molecular sieve adsorbent bed. [Pg.285]

The introduction of tritium into molecules is most commonly achieved by reductive methods, including catalytic reduction by tritium gas, PH2], of olefins, catalytic reductive replacement of halogen (Cl, Br, or I) by H2, and metal pH] hydride reduction of carbonyl compounds, eg, ketones (qv) and some esters, to tritium-labeled alcohols (5). The use of tritium-labeled building blocks, eg, pH] methyl iodide and pH]-acetic anhydride, is an alternative route to the preparation of high specific activity, tritium-labeled compounds. The use of these techniques for the synthesis of radiolabeled receptor ligands, ie, dmgs and dmg analogues, has been described ia detail ia the Hterature (6,7). [Pg.438]

While it may be convenient to use optically active reactants to probe the stereochemistry of substitution reactions, it should be emphasized that the stereochemistry of a reaction is a feature of the mechanism, not the means of determining it. Thus, it is proper to speak of a substitution process such as the hydrolysis of methyl iodide as proceeding... [Pg.97]

Forsyth et al. found that gelsemicine contains three active hydrogen atoms (Zerewitinov determination), yields a non-basic, monobenzoyl derivative, m.p. 232°, and behaves as a secondary base giving JV-methyl-gelsemicine hydriodide, m.p. 227°, on treatment with methyl iodide. It does not react with either hydroxylamine or 2 4-dinitrophenylhydrazine. On hydrogenation in dry acetic acid in presence of Adams s platinic oxide catalyst it absorbs three molecules of hydrogen. [Pg.739]

Calculate activation energies for Sn2 reactions of ammonia and trimethylamine with methyl iodide via transition states ammonia+methyl iodide and trimethyl-amine+methyl iodide, respectively. Is attack by ammonia or trimethylamine more facile Rationalize your observation by comparing electrostatic potential maps for the two transition states. Which transition state requires more charge separation Is this also the higher-energy transition state ... [Pg.204]

The 2-methyl-4,9-dioxo-4,9-dihydrothiazolo[4,5-.g]quinoline was first quar-temized with methyl iodide on pyridine nitrogen and then treated with IV-methyl-quinolinium-4-yl salt, affording monomethine cyanine dyes 41 to study solva-tochromism, acid-base properties, and antimicrobial activities (95MI1). [Pg.214]

Methylation of nitrogen at the 2 position also proves to be consistent with diuretic activity. Condensation of 160 with urea affords the heterocycle, 193. Treatment of this compound with methyl iodide and base effects alkylation on the more acidic ring nitrogen (194). Basic hydrolysis then gives the N-methylated aminosulfonamide (195). Condensation of this with chloroacetalde-... [Pg.359]

A highly modified methyl testosterone derivative also exhibits antiandrogenic activity. One synthesis of this compound Involves initial alkylation of methyl testosterone (3 ) by means of strong base and methyl iodide to afford the 4,4-dimethyl derivative Formylation with alkoxide and... [Pg.89]

A substituted thiazole ring attached to a reduced imidazole moiety is present in a compound that displays anti hypertensive activity. Reaction of thiourea 61 with methyl iodide to... [Pg.136]

Reaction of ethyl cyanoacetate with ethyl thiol acetate produces a and mixture of the dihydrothiazole derivative 80. This is ji-alkylated with methyl iodide and base (8 ), the active methylene group is brominated (82), and then a displacement with piperidine (83) is performed. Hydrolysis completes the synthesis of the diuretic agent, ozolinone (84). [Pg.140]

From intermediate 28, the construction of aldehyde 8 only requires a few straightforward steps. Thus, alkylation of the newly introduced C-3 secondary hydroxyl with methyl iodide, followed by hydrogenolysis of the C-5 benzyl ether, furnishes primary alcohol ( )-29. With a free primary hydroxyl group, compound ( )-29 provides a convenient opportunity for optical resolution at this stage. Indeed, separation of the equimolar mixture of diastereo-meric urethanes (carbamates) resulting from the action of (S)-(-)-a-methylbenzylisocyanate on ( )-29, followed by lithium aluminum hydride reduction of the separated urethanes, provides both enantiomers of 29 in optically active form. Oxidation of the levorotatory alcohol (-)-29 with PCC furnishes enantiomerically pure aldehyde 8 (88 % yield). [Pg.196]

The sulfonyl group has been known since the turn of the century to activate the a-methylene group. For instance, Fromm and Wittmann254 found that 4-nitrophenyl benzyl sulfone reacted with methyl iodide in the presence of alcoholic sodium hydroxide to afford... [Pg.626]

Route A 1- is very convenient for the substitution of OH groups by bromide or iodide. The reaction conditions are relatively mild (acetonitrile, room temperature, and reflux for 1—3 h, neutral medium). The activating halide (methyl iodide, ally or benzyl bromide) is added in excess (5 equivalents) or in large excess (10 equivalents) when the resultant halide is nearly as reactive as the activating halide. The imidazolium-iV-carboxylates are the important intermediates, which undergo a displacement reaction to give the halides,... [Pg.397]

Inclusion of basic nitrogen in the p-position is also compatible with antiinflammatory activity in this series. Nitration of phenylacetic acid (27) affords 28. Methyl iodide alkylation of the enolate prepared from 28 using two equivalents of sodium hydride gives 29. This appears to involve an Ivanov intermediate (28a). Catalytic reduction of the... [Pg.68]

The methylene group of anthrone 64 is acidic by virtue of doubly vinylic activation by the carbonyl group. Thus, treatment with methyl iodide and base leads to the 9,9-dimethyl derivative 65. Grignard reaction with 6-dimethylaminopropyl magnesium chloride... [Pg.219]


See other pages where Activator methyl iodide is mentioned: [Pg.502]    [Pg.502]    [Pg.472]    [Pg.178]    [Pg.17]    [Pg.62]    [Pg.294]    [Pg.473]    [Pg.38]    [Pg.238]    [Pg.374]    [Pg.767]    [Pg.12]    [Pg.55]    [Pg.373]    [Pg.204]    [Pg.204]    [Pg.185]    [Pg.209]    [Pg.213]    [Pg.122]    [Pg.16]    [Pg.91]    [Pg.349]    [Pg.114]    [Pg.107]    [Pg.494]    [Pg.711]    [Pg.85]    [Pg.326]    [Pg.189]    [Pg.494]    [Pg.64]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Active methyl

Methyl iodide

Methyl iodide nickel-activated carbon

© 2024 chempedia.info