Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activation: enthalpy, entropy

Table 2 Pressure Effects on Photosensitization Activation Enthalpies, Entropies, and Volumes for Four Crowded Sensitizers... Table 2 Pressure Effects on Photosensitization Activation Enthalpies, Entropies, and Volumes for Four Crowded Sensitizers...
A quantitative theory of rate processes has been developed on the assumption that the activated state has a characteristic enthalpy, entropy and free energy the concentration of activated molecules may thus be calculated using statistical mechanical methods. Whilst the theory gives a very plausible treatment of very many rate processes, it suffers from the difficulty of calculating the thermodynamic properties of the transition state. [Pg.402]

The rearrangement of the simplest possible case, 1,5-hexadiene, has been studied using deuterium labeling. The activation enthalpy is 33.5kcal/mol, and the entropy of activation is — 13.8eu. The substantially negative entropy reflects the formation of the cyclic transition state. [Pg.626]

Table 11.2. Effect of Phenyl Substituents on Activation Enthalpy and Entropy of Cope... Table 11.2. Effect of Phenyl Substituents on Activation Enthalpy and Entropy of Cope...
Equation (5-43) has the practical advantage over Eq. (5-40) that the partition functions in (5-40) are difficult or impossible to evaluate, whereas the presence of the equilibrium constant in (5-43) permits us to introduce the well-developed ideas of thermodynamics into the kinetic problem. We define the quantities AG, A//, and A5 as, respectively, the standard free energy of activation, enthalpy of activation, and entropy of activation from thermodynamics we now can write... [Pg.207]

The activation enthalpies and entropies are in principle dependent on temperature (eq. 12.22)), but only weakly so. For a limited temperature range they may be treated as constants. Obtaining these quantities experimentally is possible by measuring the reaction rate as a function of temperature, and plotting ln(k/T) against T" (eq. 12.24). [Pg.307]

Hammett originally demonstrated that the sigma-rho relation might be expected to hold if entropies of activation (or entropy changes) were constant in a series. It has since been shown that a sufficient condition is a linear relation between enthalpies and entropies of activation (or reaction), and such hnear relations are frequently encountered. Although the existence of such linear relations has always appeared somewhat mysterious, some rationale for this relationship has recently been given. [Pg.211]

The acid hydrolysis of diaziridines has been investigated kinetic-ally. The reaction is first order and shows a relatively high temperature coefficient. Thus one finds a relatively high activation enthalpy (23-28 kcal) and a positive activation entropy (2-6 eu). The influence of substitution on nitrogen is small. The velocity of the diaziridine hydrolysis depends only in the weakly acid region on the acid concentration. Between pH 7 and 3 the fc-values rise by nearly 10 . For the... [Pg.120]

Due to the differences in the values relative to any one system, conclusions cannot easily be drawn from the activation parameters listed in Table 3. However, an analysis of the results relative to 1,2-ethanediol, 2,2-dimethyl-l,3-propanediol, 1,5-pentanediol, 1,10-decanediol and diethylene glycol shows that a slight difference can be observed between aromatic and aliphatic acids the activations enthalpies and entropies are in the ranges 70, 100 kJ mol"1 and -SO, -130 J K"1 mol-1 for aromatic acids, and in the ranges 50, 70 kJ mol"1 and -200, -100 J K"1 mol-1 for the aliphatic acids. [Pg.83]

Several authors studied the influence of substituents on activation parameters. Bad-dar et al.315 who studied the polyesterification of y-arylitaconic anhydrides and adds with 1,2-ethanediol found that in the non-catalyzed reaction a p-methoxy substituent decreases both the activation enthalpy and the entropy whereas an increase is observed with a p-chloro substituent. On the other hand, Huang et al., who studied the esterification of 2,2-dimethyl-l,3-propanediol with benzoic, butanedioic, hexanedioic, decanedioic and o-phthalic add found the same values since the activation enthalpy is 64 kJ mol-1 for the first reaction and 61 kJ mol-1 for the others. [Pg.84]

Both for reaction in and IV the order with respect to catalyst is 0.5. The activation enthalpies are 96.6 3.4 and 97.6 3.4 kJ mol-1 respectively when Ti(OBu)4 is used as the catalyst. This is not too far from the activation enthalpies200 for the Sn(II)-cata-lyzed esterification of B with isophthalic acid (85.1 4.9) and with 2-hydroxyethyl hydrogen isophthalate (85.8 4.2). It is also close to the Ti(OBu)4-catalyzed esterification of benzoic acid with B (85.8 2.5)49. This is probably due to the formation of analogous intermediate complexes and similar catalytic mechanisms. On the other hand, the activation entropies of reactions III and IV are less negative than those of the reaction of benzoic or isophthalic acid with B. This probably corresponds to a stronger desolvation when the intermediary complex is formed and could be due to the presence of the sodium sulfonate group. [Pg.90]

Habid and Malek49 who studied the activity of metal derivatives in the catalyzed esterification of aromatic carboxylic acids with aliphatic glycols found a reaction order of 0.5 relative to the catalyst for Ti(OBu)4, tin(II) oxalate and lead(II) oxide. As we have already mentioned in connection with other examples, it appears that the activation enthalpies of the esterifications carried out in the presence of Ti, Sn and Pb derivatives are very close to those reported by Hartman et al.207,208 for the acid-catalyzed esterification of benzoic and substituted benzoic acids with cyclohexanol. These enthalpies also approach those reported by Matsuzaki and Mitani268 for the esterification of benzoic acids with 1,2-ethanediol in the absence of a catalyst. On the other hand, when activation entropies are considered, a difference exists between the esterification of benzoic acid with 1,2-ethanediol catalyzed by Ti, Sn and Pb derivatives and the non-catalyzed reaction268. Thus, activation enthalpies are nearly the same for metal ion-catalyzed and non-catalyzed reactions whereas the activation entropy of the metal ion-catalyzed reaction is much lower than that of the non-catalyzed reaction. [Pg.90]

It was concluded that the variations in rate are due to variations in activation enthalpy rather than entropy, and since the rates of substitution rates at the para positions of toluene and /-butylbenzene varied by only 4 % for a change in reactivity of 6,430, it was concluded that the Baker-Nathan reactivity order does not arise from a solvent effect (c/. Table 57). [Pg.106]

The activation parameters bring out several features. Note that the activation enthalpy and activation energy for kn, which represents a very rapid reaction, are quite small. Of course, a fast reaction can have a higher activation energy, if the value of AS is more positive, so as to compensate. The activation entropy associated with k is particularly large and negative, as is most often the case for a second-order reaction that occurs by a bimolecular step. In such cases, AS reflects the loss of entropy from the union of the two reaction partners into a single transition state. [Pg.158]

Table 3 shows that the small activation enthalpies of the reactions (3) and (4) are clearly affected by the zero point energy corrections. But the relative order of the activation enthalpies remains the same with or without the corrections. The activation entropies have great negative values, which is of mechanistic interest (see part 4.3.1). However, because of their similarity, when comparing the three reactions to one another they have only small importance, e.g. for estimation of copolymerization parameters (see part 4.3.2). [Pg.187]

The values of the apparent rate constants kj for each temperature and the activation enthalpies calculated using the Eyring equation (ref. 21) are summarized in Table 10. However, these values of activation enthalpies are only approximative ones because of the applied simplification and the great range of experimental errors. Activation entropies were not calculated in the lack of absolute rate constants. Presuming the likely first order with respect to 3-bromoflavanones, as well, approximative activation entropies would be between -24 and -30 e.u. for la -> Ih reaction, between -40 and - 45 e.u. for the Ih la reaction and between -33 and -38 e.u. for the elimination step. These activation parameters are in accordance with the mechanisms proposed above. [Pg.276]

Equation (5) holds for rate constants of the first order in sec" and of the second order in 1 mol sec". ) Therefore, no distinction will be made between the two pairs of the activation parameters in this paper the computation usually will be carried out in the simpler terms of Arrhenius theory, but all of the results will apply equally well for the activation enthalpy and activation entropy, too. Furthermore, many considerations apply to equilibria as well as to kinetics then the symbols AH, AS, AG will mean AH, AS, AG as well as AH°, AS°, AG°, and k will denote either rate or equilibrium constant. [Pg.415]

From a detailed study of the exchange, at various temperatures (in the range 0 to 20 °C) and acidities at a constant ionic strength of p = 1.0 Af, the kinetic parameters were calculated, k and k 2 k 2 = k2K- have values of 0.48 l.mole". sec and 0.22 sec", respectively, at 0 °C. For the exchange pathway associated with ky, values of the activation enthalpy and entropy of 12.6 kcal.mole" and — 14 cal.deg . mole , respectively, were reported. For the second pathway... [Pg.112]


See other pages where Activation: enthalpy, entropy is mentioned: [Pg.719]    [Pg.311]    [Pg.154]    [Pg.755]    [Pg.220]    [Pg.719]    [Pg.311]    [Pg.154]    [Pg.755]    [Pg.220]    [Pg.26]    [Pg.223]    [Pg.203]    [Pg.305]    [Pg.561]    [Pg.565]    [Pg.1220]    [Pg.60]    [Pg.274]    [Pg.688]    [Pg.124]    [Pg.414]    [Pg.427]    [Pg.24]    [Pg.28]    [Pg.80]    [Pg.82]    [Pg.87]    [Pg.97]    [Pg.106]    [Pg.109]    [Pg.113]    [Pg.121]    [Pg.125]    [Pg.127]   


SEARCH



Enthalpy and entropy of activation

Enthalpy entropy

© 2024 chempedia.info