Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activated urethane

The most common catalyst used in urethane adhesives is a tin(lV) salt, dibutyltin dilaurate. Tin(IV) salts are known to catalyze degradation reactions at high temperatures [30J. Tin(II) salts, such as stannous octoate, are excellent urethane catalysts but can hydrolyze easily in the presence of water and deactivate. More recently, bismuth carboxylates, such as bismuth neodecanoate, have been found to be active urethane catalysts with good selectivity toward the hydroxyl/isocyanate reaction, as opposed to catalyzing the water/isocyanate reaction, which, in turn, could cause foaming in an adhesive bond line [31]. [Pg.771]

E Atherton, NL Benoiton, E Brown, RC Sheppard, B Williams. Racemisation of activated, urethane-protected amino-acids by jp-dimethylaminopyridine. Significance in solid-phase synthesis. J Chem Soc Chem Commun 336, 1981. [Pg.116]

The isocyanate can be replaced by the corresponding activated urethane (as a milder reagent), and this activation can also involve the p-amino functions of the calix[4]arene (step e) and their subsequent reaction with a suitable amine (step f). Multigram quantities of simple tetra-urea calix[4]arenes are easily available in this way. [Pg.148]

Although in its simplest form this process would seem merely to lead to racemization, it can, in fact, be adapted to optical enrichment. Thus, use of an optically active urethane such as 4 combined with fractional crystallization of one diastereomer creates a "resolving machine." Not only optical rotation, but NMR analysis as well allows determination of optical purity with... [Pg.5]

Further reaction of the active hydrogens on nitrogen in the urethane groups (3) can occur with additional isocyanate (1) at higher temperatures to cause formation of aHophanate stmctures. The active hydrogens in urea groups can also react with additional isocyanate to form disubstituted ureas which can stiU further react with isocyanate to form biurets (13). [Pg.405]

The rate of stripping or the stripabiUty on cataly2ed urethane and epoxy resin finishes can be increased by adding formic acid, acetic acid, and phenol. Sodium hydroxide, potassium hydroxide, and trisodium phosphate [10101-89-0] may be added to the formula to increase the stripabiUty on enamel and latex paints. Other activators include oleic acid [112-80-17, trichloroacetic acid [76-85-9], ammonia, triethanolamine [102-71-6], and monoethyl amine. Methylene chloride-type removers are unique in their abiUty to accept cosolvents and activators that allow the solution to be neutral, alkaline, or acidic. This abihty gready expands the number of coatings that can be removed with methylene chloride removers. [Pg.551]

Almost all IDA derived chain extenders are made through ortho-alkylation. Diethyltoluenediamine (DE I DA) (C H gN2) (53), with a market of about 33,000 t, is the most common. Many uses for /-B I DA have been cited (1,12). Both DE I DA and /-B I DA are especially useful in RIM appHcations (49,53—55). Di(methylthio)-TDA, made by dithioalkylation of TDA, is used in cast urethanes and with other TDI prepolymers (56). Styrenic alkylation products of TDA are said to be useful, eg, as in the formation of novel polyurethane—polyurea polymers (57,58). Progress in understanding aromatic diamine stmcture—activity relationships for polyurethane chain extenders should allow progress in developing new materials (59). Chlorinated IDA is used in polyurethane—polyurea polymers of low hysteresis (48) and in reinforced polyurethane tires (60). The chloro-TDA is made by hydrolysis of chloro-TDI, derived from TDA (61). [Pg.239]

Urethanes. The basis for urethane chemistry is the reaction of an isocyanate group with a component containing an active hydrogen. [Pg.311]

Pot life is several hours versus several days for conventional non-reactive hot melts. A good reactive urethane is one which exhibits a viscosity rise of less than 10%/h. The slow increase in viscosity with urethane adhesives is due to chain extension via the slow reaction of the active hydrogen of the urethane groups with... [Pg.734]

The allophanate linkage is formed by the reaction of urethane with isocyanate, as shown in the fourth item of Fig. 1 [7], Isocyanates can react with many active hydrogen compounds. The active hydrogen of the urethane linkage is not very reactive, but if reaction temperatures get high enough (usually in excess of 100°C), or in the presence of certain allophanate catalysts, this reaction can actually become favored over the urethane reaction (see pp. 180-188 in [6]). [Pg.764]

Thermoplastic urethane adhesives may be processed into an adhesive film. I,amination of two substrates can, in theory, be done immediately, but the film is often extruded onto one substrate, covered by a release liner, and allowed to cool. Crystallization follows to create a non-tacky film that may be cut into specific shapes. The release liner is then removed, and the shaped adhesive can be heat-activated on one substrate, using infrared lamps. The second substrate is then nipped under pressure, followed by a cooling press to speed crystallization. Once the backbone has crystallized, the bond should be strong. [Pg.793]

Two-component waterborne urethane dispersions are similar to the one-component PUD s in that a polyurethane dispersion comprises one of the two components. The second component is usually a crosslinker from the following classes of materials (a) polyisocyanates, (b) aziridines, (c) polycarbodiimides, and (d) epoxies. Many of the crosslinkers are not inherently water-soluble or water-dispersible. Therefore, they must be modified with surface active agents themselves, so as to become emulsifiable in water. [Pg.797]

Methylene dianiline is normally a very reactive diamine in the presence of diisocyanates. However, a sodium chloride complex that is relatively unreactive at room temperature is commercially available. When the complex is heated to 21°C, it activates to quickly cure the urethane [76]. [Pg.801]

The miotic effect induced by physostigmine lends itself to investigation of the interrelation of chemical constitution and pharmacological action, and Stedman has devoted much attention to this subject. Eseroline is devoid of miotic activity, so that the latter action in physostigmine must be mainly due to the fact that it is a methylurethane, and, since activity only becomes evident in the urethanes of phenolic bases or phenols with a basic side-chain, a basic nucleus for the urethanes appears also to be essential. [Pg.549]

The acylation of enamines derived from cyclic ketones, which can lead to the acyl ketone or ring expansion (692-694), was studied by NMR and mass spectroscopic analysis of the products (695,696). In a comparative study of the rates of diphenylketene addition to olefins, a pronounced activation was observed in enamines (697). Enamine N- and C-acylation products were obtained from reactions of Schiff s bases (698), vinylogous urethanes (699), cyanamides (699), amides (670,700), and 2-benzylidene-3-methylbenzothiazoline (672) with acid chlorides, anhydrides, and dithio-esters (699). [Pg.392]

With Af-acyl or Af-sulfonyl hydrazines as nucleophiles, Zincke salts serve as sources of iminopyridinium ylides and ylide precursors.Reaction of the nicotinamide-derived Zincke salt 8 with ethyl hydrazino urethane 42 provided salt 43, while the tosyl hydrazine gave ylide 44 (Scheme 8.4.14). ° Benzoyl hydrazines have also been used in reactions with Zincke salts under similar conditions.Af-amino-1,2,3,6-tetrahydropyridine derivatives such as 47 (Scheme 8.4.15), which showed antiinflammatory activity, are also accessible via this route, with borohydride reduction of the initially formed ylide 46. ... [Pg.361]

The 2-oxotetrahydro-l,3-oxazines can be classified as cyclic urethanes. They have been relatively extensively investigated, because of their expected biological activity. [Pg.319]

Reaction of aniline derivatives with 4-chlorobutyroyl chloride followed by cyclization with sodium ethoxide and subsequent thionation promoted by sonication gave the corresponding A -arylpyrrolidine-2-thiones 126. Zinc-mediated condensation of diethyl bromomalonate with 126 using iodine as activator gave the vinylogous urethanes 127 whose cyclization with PPA gave the tricyclic compound 128 which upon hydrolysis afforded the acid 129 (96TL9403). [Pg.90]

The use of urethanes of phenothiazines involving the heterocyclic nitrogen (22, 45) as a means of attaching the side chain is discussed above. Although these intermediates apparently do not possess antipsychotic activity, two compounds of this general class, endowed with somewhat more complex appendages, do exhibit... [Pg.389]

From intermediate 28, the construction of aldehyde 8 only requires a few straightforward steps. Thus, alkylation of the newly introduced C-3 secondary hydroxyl with methyl iodide, followed by hydrogenolysis of the C-5 benzyl ether, furnishes primary alcohol ( )-29. With a free primary hydroxyl group, compound ( )-29 provides a convenient opportunity for optical resolution at this stage. Indeed, separation of the equimolar mixture of diastereo-meric urethanes (carbamates) resulting from the action of (S)-(-)-a-methylbenzylisocyanate on ( )-29, followed by lithium aluminum hydride reduction of the separated urethanes, provides both enantiomers of 29 in optically active form. Oxidation of the levorotatory alcohol (-)-29 with PCC furnishes enantiomerically pure aldehyde 8 (88 % yield). [Pg.196]


See other pages where Activated urethane is mentioned: [Pg.712]    [Pg.592]    [Pg.389]    [Pg.176]    [Pg.669]    [Pg.56]    [Pg.389]    [Pg.712]    [Pg.592]    [Pg.389]    [Pg.176]    [Pg.669]    [Pg.56]    [Pg.389]    [Pg.309]    [Pg.350]    [Pg.482]    [Pg.311]    [Pg.228]    [Pg.328]    [Pg.475]    [Pg.190]    [Pg.764]    [Pg.787]    [Pg.790]    [Pg.514]    [Pg.550]    [Pg.341]    [Pg.402]    [Pg.279]    [Pg.207]    [Pg.228]    [Pg.72]    [Pg.92]    [Pg.464]   
See also in sourсe #XX -- [ Pg.148 ]




SEARCH



© 2024 chempedia.info