Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Actions and Kinetics

Endo-polygalacturonases I and II (PGI and PGII) isolated from recombinant A. niger were characterized with respect to pH optimum, activity on polygalacturonic acid (pga), mode of action and kinetics on oligogalacturonates. [Pg.221]

Mode of action and kinetics. Routine polygalacturonase assays were performed in a reaction mixture containing 50 mM Na-acetate pH 4.2 and 0.25 % w/v pga at 30 °C. The release of reducing sugars was determined according to Stephens et al. [9]. For determination of pH optima the 50 mM Na-acetate buffer was replaced by Mcllvain buffers. [Pg.222]

Apart from mode of action and kinetics of wild type enzymes structure function relationships of these industrially important enzymes is of high interest to provide the necessary knowledge for genetic engineering of desired properties. As a first approach the identification of catalytically important residues was addressed in conjunction with the elucidation of the three dimensional structure [15]. [Pg.228]

Further progress in understanding the mechanism of action and kinetics of immobilized enzymes will require the study, both theoretical and experimental, of more complex enzyme systems. Of particular interest will be the study of the highly specific interactions between an enzyme embedded in a native membrane and the adjacent high or low molecular weight compounds. [Pg.204]

The terminology describing the action of antioxidants is unfortunately not clear. Terms such as antioxidant power , antioxidant effectiveness , antioxidant ability , antioxidant activity , and antioxidant capacity are often used interchangeably and without discrimination. Here we use the term antioxidant activity as meaning a measure of the rate of antioxidant action, and the term antioxidant capacity as meaning a measure of the extent of antioxidant action, i.e. the amount of radicals or intermediates and products produced during oxidation that are quenched by a given antioxidant. Thus antioxidant activity is related to the kinetics of the antioxidant action and antioxidant capacity to the stoichiometry. [Pg.331]

Various mechanisms and kinetics of coal liquefaction have been proposed and examined by many investiga tors(l,2,4-8). As a general kinetic model of coal lique-action, scheme 1 was assumed. The reaction rate of every reaction step in the scheme assumed to be first order with respect to reacting species and dissolved hydrogen. A few typical cases of a general kinetic model and the general characteristics for their cases are illustrated on Table 3. When compared these typical figures, the curves are apparently different in shape. [Pg.221]

The rate of an exothermic chemical reaction determines the rate of energy release, so factors which affect reaction kinetics are important in relation to possible reaction hazards. The effects of proportions and concentrations of reactants upon reaction rate are governed by the Law of Mass Action, and there are many examples where changes in proportion and/or concentration of reagents have transformed an... [Pg.2123]

Finally, experimental procedures differing from that described in the preceding examples could also be employed for studying catalytic reactions by means of heat-flow calorimetry. In order to assess, at least qualitatively, but rapidly, the decay of the activity of a catalyst in the course of its action, the reaction mixture could be, for instance, either diluted in a carrier gas and fed continuously to the catalyst placed in the calorimeter, or injected as successive slugs in the stream of carrier gas. Calorimetric and kinetic data could therefore be recorded simultaneously, at least in favorable cases, by using flow or pulse reactors equipped with heat-flow calorimeters in place of the usual furnaces. [Pg.259]

CL accompanies many reactions of the liquid-phase oxidation of hydrocarbons, ketones, and other compounds. It was discovered in 1959 for liquid-phase ethylbenzene oxidation [219,220]. This phenomenon was intensively studied in the 1960s and 1970s, providing foundation for several methods of study of oxidation, decay of initiators, and kinetics of antioxidant action [12,17,221], Later this technique was effectively used to study the mechanism of solid polymer oxidation (see Chapter 13). [Pg.96]

Most analyses of kinetic data have the object of identifying the constants of a rate equation based on the law of mass action and possibly some mass transfer relation.. The law of mass action Is expressed In terms of concentrations of the participants, so ultimately the chemical composition must be known as a function of time. In the laboratory the chemical composition Is determined by some instrument that is suitably calibrated to provide the needed information. Titration, refractive index, density, chromatography, spectrometry, polarimetry, conductimetry, absorbance, magnetic resonance — all of these are used at one time or another to measure chemical composition. In some cases, the calibration to chemical composition is linear with the reading. [Pg.105]

Applications of chemical kinetics to enzyme-catalyzed reactions soon followed. Because of the ease with which its progress could be monitored polarimetrically, enzyme hydrolysis of sucrose by invertase was a popular system for study. O Sullivan and Tompson (1890) concluded that the reaction obeyed the Law of Mass Action and in a paper entitled, Invertase A Contribution to the History of an Enzyme or Unorganized Ferment , they wrote [Enzymes] possess a life function without life. Is there anything [in their actions] which can be distinguished from ordinary chemical action ... [Pg.181]

Finally, the theory for the bioenergetics and kinetics of microtubule assembly and disassembly of microtubules has been extended by Hill and Kirschner (1983). They consider the coupling of nucleotide hydrolysis in terms of the energetics of the [GTP]/[GDP][PJ mass action ratio, the possible effects of force imparted by attachment of tubules to barriers on the rate constants, and other intriguing aspects of protomer-polymer exchange kinetics and thermodynamics. Unfortunately, much of their theory remains to be tested, and an evaluation of its importance in revealing the subtleties of assembly/disassembly remains for future investigations. [Pg.200]

Many studies have been performed in order to compare the mode of action, and retention kinetics in the myocardium, and the way of excretion of these different cationic species for both cell cultures, as well as in whole heart preparations. Even Tc NMR spectroscopy has been used to characterize in vivo the nature of the compounds for sestamibi (see Section 5.2.2.10.1). A recent comparative kinetic study between the different cations can be taken as a base for the clinical interpretation of the different perfusion imaging findings. ... [Pg.248]

Research in this field is ongoing aiming to understand the mechanism of action of kinetic inhibitors. Lee and Englezos (2005) showed that inclusion of polyethylene oxide (PEO) to a kinetic inhibitor solution was found to enhance by an order of magnitude the performance of the hydrate inhibitor. Binding of inhibitor molecules to the surface of hydrate crystals was considered to be the key aspect of the mechanism of kinetic inhibition (Anderson et al.,... [Pg.37]

In dealing with the mechanism of action (and response) of a flowthrough (bio)chemical sensor, one should consider three different types of kinetics (Fig. 2.20), namely ... [Pg.74]

On a molecular level, reactions occur by coUisions between molecules, and the rate is usually proportional to the density of each reacting molecule. We will return to the subject of reaction mechanisms and elementary reactions in Chapter 4. Here we define elementary reactions more simply and loosely as reactions whose kinetics agree with their stoichiometry. This relationship between stoichiometry and kinetics is sometimes called the Law of Mass Action, although it is by no means a fundamental law of nature, and it is frequently invalid. [Pg.32]

Methadone (Dolophine) has an analgesic profile and potency similar to that of morphine but a longer duration of action and better oral bioavaUabUity. The kinetic properties of methadone and its derivative, LAAM, have been shown to be useful in the treatment of opioid addiction, as discussed in Chapter 35. [Pg.323]


See other pages where Actions and Kinetics is mentioned: [Pg.60]    [Pg.720]    [Pg.215]    [Pg.60]    [Pg.720]    [Pg.215]    [Pg.2732]    [Pg.388]    [Pg.513]    [Pg.194]    [Pg.226]    [Pg.817]    [Pg.392]    [Pg.20]    [Pg.396]    [Pg.421]    [Pg.2]    [Pg.20]    [Pg.489]    [Pg.63]    [Pg.626]    [Pg.5]    [Pg.198]    [Pg.744]    [Pg.328]    [Pg.366]    [Pg.99]    [Pg.176]    [Pg.468]    [Pg.70]    [Pg.236]    [Pg.166]    [Pg.97]   


SEARCH



Kinetics and Mechanisms of Action

Mass action kinetics macroscopic and microscopic approach

© 2024 chempedia.info