Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids for acylations

It would be of interest to test these hypotheses by examining the methanogens and thermophiles for the presence of FAS and acyl transferases and studying the effect of salt concentration, low pH and high temperature on their activities and on those of the mevalonate enzyme system. It may be noted that preliminary studies with M. thermo-autotrophicum have revealed the presence of a functional FAS producing fatty acids for acylation only of membrane proteins (Pugh and Kates, unpublished data). [Pg.291]

Acylations. Activation of carboxylic acids including pivalic acid and trifluoroacetic acid for acylation is achieved by treatment with PhjP and NBS. Acyloxytriphenyl-phosphonium bromides are the acylating agents. [Pg.412]

Acylation. Acylation is the most rehable means of introducing a 3-substituent on the indole ring. Because 3-acyl substituents can be easily reduced to 3-aLkyl groups, a two-step acylation—reduction sequence is often an attractive alternative to direct 3-aLkylation. Several kinds of conditions have been employed for acylation. Very reactive acyl haUdes, such as oxalyl chloride, can effect substitution directiy without any catalyst. Normal acid chlorides are usually allowed to react with the magnesium (15) or 2inc (16) salts. The Vilsmeier-Haack conditions involving an amide and phosphoms oxychloride, in which a chloroiminium ion is the active electrophile, frequentiy give excellent yields of 3-acylindoles. [Pg.85]

In these cases, it is better to protect the carboxyl group. Optimized conditions for A/-acetylation have been studied (78). A/-Acylation can be utilized for protecting the amino group in the reaction of amino acids, for example in peptide synthesis. [Pg.280]

AH cephalosporins found in nature (Tables 1 and 2) have the D-a-aminoadipic acid 7-acyl side chain (21). AH of these compounds can be classified as having rather low specific activity. A substantial amount of the early work in the cephalosporin area was unsuccessfiiHy directed toward replacing the aminoadipic acid side chain or modifying it appropriately by fermentation or enzymatic processes (6,22). A milestone ia the development of cephalosporins occurred in 1960 with the discovery of a practical chemical process to remove the side chain to afford 7-ACA (1) (1). Several related processes were subsequendy developed (22,23). The ready avaHabHity of 7-ACA opened the way to thousands of new semisynthetic cephalosporins. The cephalosporin stmcture offers more opportunities for chemical modification than does that of penicillins There are two side chains that especiaHy lend themselves to chemical manipulation the 7-acylamino and 3-acetoxymethyl substituents. [Pg.21]

Acid anhydrides are also usehil for acylation of primary alcohols in organic solvents. The reaction produces high yields of the primary acylated products with only traces (1—2%) of diesters (95). [Pg.341]

Acid chlorides are used for the quantitative deterrnination of hydroxyl groups and for acylation of sugars. Industrial appHcations include the formation of the alkyl or aryl carbonates from phosgene (see Carbonic and chloroformic esters) and phosphate esters such as triethyl, triphenyl, tricresyl, and tritolyl phosphates from phosphoms oxychloride. [Pg.380]

FIGURE 24.7 The acyl-CoA synthetase reaction activates fatty acids for /3-oxidation. The reaction is driven by hydrolysis of ATP to AMP and pyrophosphate and by the subsequent hydrolysis of pyrophosphate. [Pg.781]

The formulated mechanism is supported by the finding that no halogen from the phosphorus trihalide is transferred to the a-carbon of the carboxylic acid. For instance, the reaction of a carboxylic acid with phosphorus tribromide and chlorine yields exclusively an a-chlorinated carboxylic acid. In addition, carboxylic acid derivatives that enolize easily—e.g. acyl halides and anhydrides—do react without a catalyst present. [Pg.160]

Somewhat milder oxidative conditions lead to loss of but one carbon. Periodic acid cleavage of the side chain in 65, leads to the so-called etio acid (66). Reaction with propionic anhydride leads to acylation of the 17-hydroxyl group (67). Possibilities for neighboring group participation severely limit the methods available for activating the acid for esterification. Best results seemed to have been obtained by use of a mixed anhydride from treatment with diphenyl chloro-... [Pg.74]

Hydrolysis of acyl halides is not usually catalyzed by acids, except for acyl fluorides, where hydrogen bonding can assist in the removal of There are several methods available for the hydrolysis of acyl fluorides. ... [Pg.469]

The scope of this reaction is similar to that of 10-21. Though anhydrides are somewhat less reactive than acyl halides, they are often used to prepare carboxylic esters. Acids, Lewis acids, and bases are often used as catalysts—most often, pyridine. Catalysis by pyridine is of the nucleophilic type (see 10-9). 4-(A,A-Dimethylamino)pyridine is a better catalyst than pyridine and can be used in cases where pyridine fails. " Nonbasic catalysts are cobalt(II) chloride " and TaCls—Si02. " Formic anhydride is not a stable compound but esters of formic acid can be prepared by treating alcohols " or phenols " with acetic-formic anhydride. Cyclic anhydrides give monoesterified dicarboxylic acids, for example,... [Pg.483]

Similar additions have been successfully carried out with carboxylic acids, anhydrides, acyl halides, carboxylic esters, nitriles, and other types of compounds. These reactions are not successful when the alkene contains electron-withdrawing groups such as halo or carbonyl groups. A free-radical initiator is required, usually peroxides or UV light. The mechanism is illustrated for aldehydes but is similar for the other compounds ... [Pg.1034]

This pathway (the microsomal system ) elongates saturated and unsaturated fatty acyl-CoAs (from Cjg upward) by two carbons, using malonyl-CoA as acetyl donor and NADPH as reductant, and is catalyzed by the microsomal fatty acid elongase system of enzymes (Figure 21-5). Elongation of stearyl-CoA in brain increases rapidly during myehnation in order to provide C22 and C24 fatty acids for sphingoEpids. [Pg.177]

Pantothenic acid is present in coenzyme A and acyl carrier protein, which act as carriers for acyl groups in metabolic reactions. Pyridoxine, as pyridoxal phosphate, is the coenzyme for several enzymes of amino acid metabolism, including the aminotransferases, and of glycogen phosphorylase. Biotin is the coenzyme for several carboxylase enzymes. [Pg.497]

In order to extend the scope of the reaction, and with the aim of designing a greener approach to the above set of reactions, we preformed the acylation of the same substrates with different acylation agents, such as maleic anhydride, p-methoxybenzoic acid and acetic acid (Scheme 48.4). Table 48.3 shows the results for acylation of benzenesulfonamide. [Pg.431]


See other pages where Acids for acylations is mentioned: [Pg.161]    [Pg.71]    [Pg.442]    [Pg.161]    [Pg.71]    [Pg.442]    [Pg.92]    [Pg.124]    [Pg.335]    [Pg.341]    [Pg.86]    [Pg.292]    [Pg.49]    [Pg.293]    [Pg.586]    [Pg.531]    [Pg.534]    [Pg.743]    [Pg.781]    [Pg.794]    [Pg.172]    [Pg.753]    [Pg.36]    [Pg.494]    [Pg.494]    [Pg.181]    [Pg.494]    [Pg.509]    [Pg.523]    [Pg.777]    [Pg.392]    [Pg.41]    [Pg.197]    [Pg.105]    [Pg.426]   
See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Ulosonic acid acylation reactions for

With Acylating Agents Followed by Acids, Bases, or Hydrogen Peroxide (for Pyrimidin-4-ones)

© 2024 chempedia.info