Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acidic conditions Grignard reagents

This Michael-type addition is catalyzed by lanthanum(3+) [16096-89-2] (80). Ethylene glycol [107-21-1] reacts with maleate under similar conditions (81). A wide range of nucleophilic reagents add to the maleate and fumarate frameworks including alcohols, ammonia, amines, sulfinic acids, thioureas, Grignard reagents, Michael reagents, and alkali cyanides (25). [Pg.452]

The sisyl ether is stable to Grignard and Wittig reagents, oxidation with Jones reagent, KF/18-crown-6, CsF, and strongly acidic conditions (TsOH, HCl) that cleave most other silyl groups. It is not stable to alkyllithiums or LiAlH4. [Pg.146]

The reaction of tert-alkyl Grignard reagents with carboxylic acid chlorides in the presence of a copper catalyst provides ieri-alkyl ketones in substantially lower yields than those reported here.4,14 The simplicity and mildness of experimental conditions and isolation procedure, the diversity of substrate structural type, and the functional group selectivity of these mixed organocuprate reagents render them very useful for conversion of carboxylic acid chlorides to the corresponding secondary and tertiary alkyl ketones.15... [Pg.126]

Aldehydes can be obtained by reaction of Grignard reagents with triethyl orthoformate. The addition step is preceded by elimination of one of the alkoxy groups to generate an electrophilic oxonium ion. The elimination is promoted by the magnesium ion acting as a Lewis acid.93 The acetals formed by the addition are stable to the reaction conditions, but are hydrolyzed to aldehydes by aqueous acid. [Pg.638]

The ketone 15 was eventually prepared by Grignard addition to Weinreb amide 21, as shown in Scheme 5.5. The Weinreb amide 21 was prepared from p-iodobenzoic acid (20). The phenol of readily available 3-hydroxybenzaldehyde (22) was first protected with a benzyl group, then the aldehyde was converted to chloride 24 via alcohol 23 under standard conditions. Preparation of the Grignard reagent 25 from chloride 24 was initially problematic. A large proportion of the homo-coupling side product 26 was observed in THF. The use of a 3 1 mixture of toluene THF as the reaction solvent suppressed this side reaction [7]. The iodoketone 15 was isolated as a crystalline solid and this sequence was scaled up to pilot plant scale to make around 50 kg of 15. [Pg.147]

The use of oxazolines in aromatic substitution is a valuable synthetic tool.2 The o-methoxy- or o-fluorophenyloxazoline reacts readily with a variety of organofithium or Grignard reagents to displace only the ortho substituent. In this fashion a number of ortho-substituted benzoic acids, benzaldehydes, and unsymmetrical biphenyls are accessible. The reaction takes place under very mild conditions, usually at or below room temperature, and thus allows a number of other sensitive groups to be present. [Pg.193]

Recent notable improvements by Knochel and co-workers include iron-catalyzed cross-coupling reactions of various acid chlorides 148 with dialkylzinc reagents (Equation (24))324 as well as the iron-catalyzed arylation of aroyl cyanides 149 with Grignard reagents (Equation (25)).3 5 In the first case Knochel s reaction conditions tolerate ester groups on the organozinc compounds, while in the latter case ester, aryl alkyl ether, cyano, and chloro functionalities on the aromatic moieties are compatibles with the reaction conditions. [Pg.439]

Organomagnesium reagents, which can serve as the nucleophiles in the Kumada coupling, are easy to make and many of them are commercially available. Even though some Kumada reactions can be run at room or lower temperature, many functional groups are not tolerant of Grignard reagents. Nonetheless, in the synthesis of thienylbenzoic acid 24, the carboxylic acid moiety did survive the reaction conditions [25],... [Pg.237]

The intramolecular oxidative cyclization of the anilinobenzoquinone 940 with a catalytic amount of palladium(II) acetate in the presence of copper(II) acetate in air afforded the carbazole-l,4-quinone 941 in almost quantitative yield. The regioselective introduction of the heptyl side chain at C-1 of the carbazole-l,4-quinone 941 was achieved by a 1,2-addition of the corresponding Grignard reagent to give the carbazole-l,4-quinol 942 in 55% yield. However, 1,4-addition at C-3 and 1,2-addition at C-4 led to the regioisomeric products 943 and 944 as well. Finally, under acidic reaction conditions, the carbazole-l,4-quinol 942 was smoothly transformed to... [Pg.272]


See other pages where Acidic conditions Grignard reagents is mentioned: [Pg.267]    [Pg.381]    [Pg.326]    [Pg.105]    [Pg.391]    [Pg.116]    [Pg.128]    [Pg.196]    [Pg.215]    [Pg.369]    [Pg.372]    [Pg.193]    [Pg.719]    [Pg.209]    [Pg.126]    [Pg.19]    [Pg.1205]    [Pg.390]    [Pg.29]    [Pg.238]    [Pg.110]    [Pg.528]    [Pg.348]    [Pg.262]    [Pg.306]    [Pg.11]    [Pg.52]    [Pg.30]    [Pg.116]    [Pg.79]    [Pg.131]    [Pg.468]    [Pg.410]    [Pg.198]    [Pg.212]    [Pg.1135]    [Pg.568]    [Pg.399]    [Pg.61]    [Pg.445]   
See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Acid Reagents

Acidic conditions

Acidic reagents

© 2024 chempedia.info