Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid iodides synthesis

In this paper we disclose the syngas homologation of carboxylic acids via ruthenium homogeneous catalysis. This novel homologation reaction involves treatment of lower MW carboxylic acids with synthesis gas (C0/H2) in the presence of soluble ruthenium species, e.g., Ru02, Ru3(C0)12, H4Ru4(C0)12, coupled with iodide-containing promoters such as HI or an alkyl iodide (1). [Pg.224]

There have been further applications of MesSil and MesSiBr as dealkylating agents for ethers, esters, phosphonic acid esters, and alcohols, the last reaction using McsSil being a useful alkyl iodide synthesis. MesSil also converts acetals into ketones or sulphoxides into sulphides, whilst a mixture of PhSiMes and I2 is capable of dealkylating esters at ca. 110°C. ... [Pg.189]

As(ONa), -I- CH,I — [CH,As(ONa)jI] CH,AsO(ONa), — CH,AsO(OH), unstable product losing sodium iodide to form disodium methylarsonate, which on acidification liberates methylarsonic acid. Note that this synthesis is limited to alkylarsonic acids, whereas the Bart synthesis (p. 312) is limited to aiy larsonic acids. [Pg.314]

Alkynes undergo stoichiometric oxidative reactions with Pd(II). A useful reaction is oxidative carboiiyiation. Two types of the oxidative carbonyla-tion of alkynes are known. The first is a synthesis of the alkynic carbox-ylates 524 by oxidative carbonylation of terminal alkynes using PdCN and CuCh in the presence of a base[469], Dropwise addition of alkynes is recommended as a preparative-scale procedure of this reation in order to minimize the oxidative dimerization of alkynes as a competitive reaction[470]. Also efficient carbonylation of terminal alkynes using PdCU, CuCI and LiCi under CO-O2 (1 I) was reported[471]. The reaction has been applied to the synthesis of the carbapenem intermediate 525[472], The steroidal acetylenic ester 526 formed by this reaction undergoes the hydroarylalion of the triple bond (see Chapter 4, Section 1) with aryl iodide and formic acid to give the lactone 527(473],... [Pg.97]

The benzoic acid derivative 457 is formed by the carbonylation of iodoben-zene in aqueous DMF (1 1) without using a phosphine ligand at room temperature and 1 atm[311]. As optimum conditions for the technical synthesis of the anthranilic acid derivative 458, it has been found that A-acetyl protection, which has a chelating effect, is important[312]. Phase-transfer catalysis is combined with the Pd-catalyzed carbonylation of halides[3l3]. Carbonylation of 1,1-dibromoalkenes in the presence of a phase-transfer catalyst gives the gem-inal dicarboxylic acid 459. Use of a polar solvent is important[314]. Interestingly, addition of trimethylsilyl chloride (2 equiv.) increased yield of the lactone 460 remarkabiy[3l5]. Formate esters as a CO source and NaOR are used for the carbonylation of aryl iodides under a nitrogen atmosphere without using CO[316]. Chlorobenzene coordinated by Cr(CO)j is carbonylated with ethyl formate[3l7]. [Pg.190]

The telomer 145 of nitroethane was used for the synthesis of recifeiolide (148)[121], The nitro group was converted into a hydroxy group via the ketone and the terminal double bond was converted into iodide to give 146. The ester 147 of phenythioacetic acid was prepared and its intramolecular alkylation afforded the 12-membered lactone, which was converted into recifeiolide (148),... [Pg.445]

The O-alkyl derivatives of those A-oxides, which exist partly or entirely as (V-hydroxy tautomers, may be made by primary synthesis (as above) or by alkylation. Thus, 5,5-diethyl-1-hydroxybarbituric acid (936 R = H) with methyl iodide/sodium ethoxide gives the 1-methoxy derivative (936 R = Me) or with benzenesulfonyl chloride/ethoxide it gives the alkylated derivative (936 R = PhS02) (78AJC2517). [Pg.142]

The first total synthesis of erythronolide A was accomplished from iodide A and lactone B, the same intermediate which had been used for the synthesis of erythronolide B. The pronounced acid sensitivity of erythronolide A necessitated a digression of the final steps of the synthesis from those used for the earlier synthesis of erythronolide B. [Pg.108]

This was confirmed by Spath s synthesis of sinapine iodide by the following method. Syringic acid was converted into carbethoxysyringic acid, and this through the acid chloride into the aldehyde,... [Pg.649]

The ready reduction of iodohydrins is utilized in the Cornforth reaction for preparing olefins from epoxides. Here the opening and reduction are carried out in one step by treatment of the epoxide, in an acetic acid-sodium acetate buffer, with sodium iodide and zinc. A less common use of iodohy-drin reduction is illustrated in the synthesis of the diene (127) ... [Pg.342]

A detailed procedure for the use of MCPBA recently appeared in Reagents for Organic Synthesis by Fieser and Fieser. The commercially available MCPBA (Aldrich) is 85% pure the contaminant, m-chlorobenzoic acid, can be removed by washing with a phosphate buffer of pH 7.5. The epoxidation is usually performed as follows a solution of 3 -acetoxy-5a-androst-16-ene (2.06 g, 6.53 mmoles) in 25 ml of chloroform (or methylene dichloride) is chilled to 0° in a flask fitted with a condenser and drierite tube and treated with a solution of commercial MCPBA (1.74 g, 20% excess) in 25 ml chloroform precooled to the same temperature. The mixture is stirred and allowed to warm to room temperature. After 23 hr (or until TLC shows reaction is complete) the solution is diluted with 100 ml chloroform and washed in sequence with 100 ml of 10% sodium sulfite or sodium iodide followed by sodium thiosulfate, 200 ml of 1 M sodium bicarbonate and 200 ml water. The chloroform extract is dried (MgS04) and evaporated in vacuo to a volume of ca. 10 ml. Addition of methanol (10 ml) followed by cooling of the mixture to —10° yields 0.8 gof 16a,17a-epoxide mp 109.5-110°. Additional product can be obtained by concentration of the mother liquor (total yield 80-90%). [Pg.19]


See other pages where Acid iodides synthesis is mentioned: [Pg.5803]    [Pg.5803]    [Pg.314]    [Pg.82]    [Pg.327]    [Pg.44]    [Pg.200]    [Pg.234]    [Pg.246]    [Pg.157]    [Pg.178]    [Pg.207]    [Pg.312]    [Pg.6]    [Pg.6]    [Pg.41]    [Pg.166]    [Pg.192]    [Pg.231]    [Pg.293]    [Pg.343]    [Pg.462]    [Pg.543]    [Pg.791]   


SEARCH



Iodides, synthesis

Trimethylsilyl iodide acid halide synthesis

© 2024 chempedia.info