Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylcholinesterase receptor

Schematic illustration of a generalized cholinergic junction (not to scale). Choline is transported into the presynaptic nerve terminal by a sodium-dependent choline transporter (CHT). This transporter can be inhibited by hemicholinium drugs. In the cytoplasm, acetylcholine is synthesized from choline and acetyl -A (AcCoA) by the enzyme choline acetyltransferase (ChAT). Acetylcholine is then transported into the storage vesicle by a second carrier, the vesicle-associated transporter (VAT), which can be inhibited by vesamicol. Peptides (P), adenosine triphosphate (ATP), and proteoglycan are also stored in the vesicle. Release of transmitter occurs when voltage-sensitive calcium channels in the terminal membrane are opened, allowing an influx of calcium. The resulting increase in intracellular calcium causes fusion of vesicles with the surface membrane and exocytotic expulsion of acetylcholine and cotransmitters into the junctional cleft (see text). This step can he blocked by botulinum toxin. Acetylcholine s action is terminated by metabolism by the enzyme acetylcholinesterase. Receptors on the presynaptic nerve ending modulate transmitter release. SNAPs, synaptosome-associated proteins VAMPs, vesicle-associated membrane proteins. Schematic illustration of a generalized cholinergic junction (not to scale). Choline is transported into the presynaptic nerve terminal by a sodium-dependent choline transporter (CHT). This transporter can be inhibited by hemicholinium drugs. In the cytoplasm, acetylcholine is synthesized from choline and acetyl -A (AcCoA) by the enzyme choline acetyltransferase (ChAT). Acetylcholine is then transported into the storage vesicle by a second carrier, the vesicle-associated transporter (VAT), which can be inhibited by vesamicol. Peptides (P), adenosine triphosphate (ATP), and proteoglycan are also stored in the vesicle. Release of transmitter occurs when voltage-sensitive calcium channels in the terminal membrane are opened, allowing an influx of calcium. The resulting increase in intracellular calcium causes fusion of vesicles with the surface membrane and exocytotic expulsion of acetylcholine and cotransmitters into the junctional cleft (see text). This step can he blocked by botulinum toxin. Acetylcholine s action is terminated by metabolism by the enzyme acetylcholinesterase. Receptors on the presynaptic nerve ending modulate transmitter release. SNAPs, synaptosome-associated proteins VAMPs, vesicle-associated membrane proteins.
The tetrahydropyrimidines exert their effects on parasites by inducing marked activation of nicotinic receptors producing spastic paralysis. They are also potent agonists of acetylcholinesterase receptors. Pyrantel and morantel are estimated to be 100 times more potent than acetylcholine in this... [Pg.119]

Mode of Action. All of the insecticidal carbamates are cholinergic, and poisoned insects and mammals exhibit violent convulsions and other neuromuscular disturbances. The insecticides are strong carbamylating inhibitors of acetylcholinesterase and may also have a direct action on the acetylcholine receptors because of their pronounced stmctural resemblance to acetylcholine. The overall mechanism for carbamate interaction with acetylcholinesterase is analogous to the normal three-step hydrolysis of acetylcholine however, is much slower than with the acetylated enzyme. [Pg.293]

Diethyl 0-(3-methyl-5-pyrazolyl) phosphate (722) and 0,0-diethyl 0-(3-methyl-5-pyrazolyl) phosphorothioate (723) were prepared in 1956 by Geigy and they act, as do all organophosphates in both insects and mammals, by irreversible inhibition of acetylcholinesterase in the cholinergic synapses. Interaction of acetylcholine with the postsyn-aptic receptor is therefore greatly potentiated. 0-Ethyl-5-n-propyl-0-(l-substituted pyrazol-4-yl)(thiono)thiolphosphoric acid esters have been patented as pesticides (82USP4315008). [Pg.297]

Particular attention is given to the development of new mechanistic biomarker assays and bioassays that can be used as indices of the toxicity of mixtures. These biomarker assays are typically based on toxic mechanisms such as brain acetylcholinesterase inhibition, vitamin K antagonism, thyroxin antagonism, Ah-receptor-mediated toxicity, and interaction with the estrogenic receptor. They can give integrative measures of the toxicity of mixtures of compounds where the components of the mixture share the same mode of action. They can also give evidence of potentiation as well as additive toxicity. [Pg.254]

Gamma aminobutyric acid (GABA) receptors Acetylcholinesterase... [Pg.297]

Acetylcholinesterase is a component of the postsynaptic membrane of cholinergic synapses of the nervous system in both vertebrates and invertebrates. Its structure and function has been described in Chapter 10, Section 10.2.4. Its essential role in the postsynaptic membrane is hydrolysis of the neurotransmitter acetylcholine in order to terminate the stimulation of nicotinic and muscarinic receptors (Figure 16.2). Thus, inhibitors of the enzyme cause a buildup of acetylcholine in the synaptic cleft and consequent overstimulation of the receptors, leading to depolarization of the postsynaptic membrane and synaptic block. [Pg.299]

Figure 6.2 Diagrammatic representation of a cholinergic synapse. Some 80% of neuronal acetylcholine (ACh) is found in the nerve terminal or synaptosome and the remainder in the cell body or axon. Within the synaptosome it is almost equally divided between two pools, as shown. ACh is synthesised from choline, which has been taken up into the nerve terminal, and to which it is broken down again, after release, by acetylcholinesterase. Postsynaptically the nicotinic receptor is directly linked to the opening of Na+ channels and can be blocked by compounds like dihydro-jS-erythroidine (DH/IE). Muscarinic receptors appear to inhibit K+ efflux to increase cell activity. For full details see text... Figure 6.2 Diagrammatic representation of a cholinergic synapse. Some 80% of neuronal acetylcholine (ACh) is found in the nerve terminal or synaptosome and the remainder in the cell body or axon. Within the synaptosome it is almost equally divided between two pools, as shown. ACh is synthesised from choline, which has been taken up into the nerve terminal, and to which it is broken down again, after release, by acetylcholinesterase. Postsynaptically the nicotinic receptor is directly linked to the opening of Na+ channels and can be blocked by compounds like dihydro-jS-erythroidine (DH/IE). Muscarinic receptors appear to inhibit K+ efflux to increase cell activity. For full details see text...
No overall reduction in cholinergic muscarinic receptors was found but recent studies with relatively specific ligands show a loss of presynaptic M2 receptors, in keeping with the loss of terminals, but no reduction in postsynaptic Mi receptors. Some acetylcholinesterase is found in plaques. [Pg.380]

Carbachol stimulates the same muscarinic receptor as pilocarpine and also inhibits acetylcholinesterase, the enzyme that metabolizes acetylcholine. Carbachol is more potent than pilocarpine, but it causes more accommodation spasm and brow ache and may also cause anterior uveitis. Carbachol is rarely used today because of the side-effect profile. [Pg.920]

Ecothiophate iodide and denecarium bromide inhibit acetylcholinesterase. Inhibition of this enzyme increases the availability of acetylcholine at the nerve junction, thus increasing the stimulation of the muscarinic (M3) receptors of the ciliary... [Pg.920]

Organophosphate Ester Hydraulic Fluids. The biomarkers of effects after exposure to organophosphate ester hydraulic fluids are well established in cases of delayed neuropathy (clinical signs of peripheral neuropathy). Further study would be helpful to determine whether certain effects (such as diarrhea after oral exposure) are due to direct action of the toxic agent on the target organ or to inhibition of acetylcholinesterase at the acetylcholine nerve receptor site on the organ. [Pg.248]

The postsynaptic membrane opposite release sites is also highly specialized, consisting of folds of plasma membrane containing a high density of nicotinic ACh receptors (nAChRs). Basal lamina matrix proteins are important for the formation and maintenance of the NMJ and are concentrated in the cleft. Acetylcholinesterase (AChE), an enzyme that hydrolyzes ACh to acetate and choline to inactivate the neurotransmitter, is associated with the basal lamina (see Ch. 11). [Pg.172]

Both nicotinic receptors and acetylcholinesterase are regulated tightly during differentiation and synapse formation 202... [Pg.185]


See other pages where Acetylcholinesterase receptor is mentioned: [Pg.31]    [Pg.300]    [Pg.31]    [Pg.300]    [Pg.510]    [Pg.827]    [Pg.853]    [Pg.71]    [Pg.74]    [Pg.115]    [Pg.119]    [Pg.10]    [Pg.95]    [Pg.99]    [Pg.157]    [Pg.250]    [Pg.310]    [Pg.316]    [Pg.107]    [Pg.486]    [Pg.670]    [Pg.181]    [Pg.197]    [Pg.10]    [Pg.66]    [Pg.110]    [Pg.216]    [Pg.132]    [Pg.146]    [Pg.468]    [Pg.185]    [Pg.186]    [Pg.202]   
See also in sourсe #XX -- [ Pg.372 ]




SEARCH



Acetylcholine receptors Acetylcholinesterase

Acetylcholinesterase

Acetylcholinesterase receptor binding

Acetylcholinesterases

Central nervous system receptors, acetylcholinesterase

Central nervous system receptors, acetylcholinesterase inhibition

Muscarinic receptors acetylcholinesterase inhibition

Nicotinic receptors, acetylcholinesterase inhibition

© 2024 chempedia.info