Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetyl-CoA thiolase

A bifnnctional enol-CoA hydratase and 3-hydroxyacetyl-CoA dehydrogenase are used in the degradation of CoA-alkenoic esters to the p-keto acid. This is then degraded to acetyl-CoA and the lower alkanoate ester by 3-ketoacetyl CoA thiolase and acetyl-CoA thiolase. [Pg.118]

With the exception of the acetyl-CoA thiolase, all these enzymes are located exclusively in the peroxisomes, whereas the enzymes that are involved in lipid synthesis are found in the microsomes and the mitochondrion. [Pg.118]

Fig. 3. Protection of thiolase against iodoacetamide inhibition by preincubation with acetoacetyl-CoA or acetyl-CoA. >, Thiolase was incubated with 9 x 10" M acetoacetyl-CoA (AcAcCoA) or acetyl-CoA (AcCoA) for 10 minutes at 0°C and pH 8.2. 5 x 10" M iodoacetamide was then added and samples taken from the reaction mixture at the times indicated in the figure. The reaction of iodoacetamide with the enzyme was stopped by the addition of an excess of cysteine and... Fig. 3. Protection of thiolase against iodoacetamide inhibition by preincubation with acetoacetyl-CoA or acetyl-CoA. >, Thiolase was incubated with 9 x 10" M acetoacetyl-CoA (AcAcCoA) or acetyl-CoA (AcCoA) for 10 minutes at 0°C and pH 8.2. 5 x 10" M iodoacetamide was then added and samples taken from the reaction mixture at the times indicated in the figure. The reaction of iodoacetamide with the enzyme was stopped by the addition of an excess of cysteine and...
The final step in the /3-oxidation cycle is the cleavage of the /3-ketoacyI-CoA. This reaction, catalyzed by thiolase (also known as j8-ketothiolase), involves the attack of a cysteine thiolate from the enzyme on the /3-carbonyI carbon, followed by cleavage to give the etiolate of acetyl-CoA and an enzyme-thioester intermediate (Figure 24.17). Subsequent attack by the thiol group of a second CoA and departure of the cysteine thiolate yields a new (shorter) acyl-CoA. If the reaction in Figure 24.17 is read in reverse, it is easy to see that it is a Claisen condensation—an attack of the etiolate anion of acetyl-CoA on a thioester. Despite the formation of a second thioester, this reaction has a very favorable A).q, and it drives the three previous reactions of /3-oxidation. [Pg.788]

FIGURE 24.17 The mechanism of the thiolase reaction. Attack by an enzyme cysteine thiolate group at the /3-carbonyl carbon produces a tetrahedral intermediate, which decomposes with departure of acetyl-CoA, leaving an enzyme thioester intermediate. Attack by the thiol group of a second CoA yields a new (shortened) acyl-CoA. [Pg.788]

Ketone body synthesis occurs only in the mitochondrial matrix. The reactions responsible for the formation of ketone bodies are shown in Figure 24.28. The first reaction—the condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA—is catalyzed by thiolase, which is also known as acetoacetyl-CoA thiolase or acetyl-CoA acetyltransferase. This is the same enzyme that carries out the thiolase reaction in /3-oxidation, but here it runs in reverse. The second reaction adds another molecule of acetyl-CoA to give (i-hydroxy-(i-methyl-glutaryl-CoA, commonly abbreviated HMG-CoA. These two mitochondrial matrix reactions are analogous to the first two steps in cholesterol biosynthesis, a cytosolic process, as we shall see in Chapter 25. HMG-CoA is converted to acetoacetate and acetyl-CoA by the action of HMG-CoA lyase in a mixed aldol-Claisen ester cleavage reaction. This reaction is mechanistically similar to the reverse of the citrate synthase reaction in the TCA cycle. A membrane-bound enzyme, /3-hydroxybutyrate dehydrogenase, then can reduce acetoacetate to /3-hydroxybutyrate. [Pg.798]

Step 4 of Figure 29.3 Chain Cleavage Acetyl CoA is split off from the chain in the final step of /3-oxidation, leaving an acyl CoA that is two carbon atoms shorter than the original. The reaction is catalyzed by /3-ketoacyl-CoA thiolase and is mechanistically the reverse of a Claisen condensation reaction (Section 23.7). In the forward direction, a Claisen condensation joins two esters together to form a /3-keto ester product. In the reverse direction, a retro-Claisen reaction splits a /3-keto ester (or /3-keto thioester) apart to form two esters (or two thioesters). [Pg.1136]

The acetoacetyl-CoA then reacts with CoASH to yield two molecules of acetyl-CoA, catalyzed by acetoacetyl-CoA thiolase... [Pg.116]

Figure 22-3. 3-Oxidation of fatty acids. Long-chain acyl-CoA is cycled through reactions 2-5, acetyl-CoA being split off, each cycle, by thiolase (reaction 5). When the acyl radical is only four carbon atoms in length, two acetyl-CoA molecules are formed in reaction 5. Figure 22-3. 3-Oxidation of fatty acids. Long-chain acyl-CoA is cycled through reactions 2-5, acetyl-CoA being split off, each cycle, by thiolase (reaction 5). When the acyl radical is only four carbon atoms in length, two acetyl-CoA molecules are formed in reaction 5.
Enzymes responsible for ketone body formation are associated mainly with the mitochondria. Two acetyl-CoA molecules formed in P-oxidation condense with one another to form acetoacetyl-CoA by a reversal of the thiolase reaction. Acetoacetyl-CoA, which is the... [Pg.184]

In extrahepatic tissues, acetoacetate is activated to acetoacetyl-CoA by succinyl-CoA-acetoacetate CoA transferase. CoA is transferred from succinyl-CoA to form acetoacetyl-CoA (Figure 22-8). The acetoacetyl-CoA is split to acetyl-CoA by thiolase and oxidized in the citric acid cycle. If the blood level is raised, oxidation of ketone bodies increases until, at a concentration of approximately 12 mmol/L, they saturate the oxidative machinery. When this occurs, a large proportion of the oxygen consumption may be accounted for by the oxidation of ketone bodies. [Pg.186]

The chain shortening pathway has not been characterized in detail at the enzymatic level in insects. It presumably is similar to the characterized pathway as it occurs in vertebrates. These enzymes are a partial P-oxidation pathway located in peroxisomes [29]. The key enzymes involved are an acyl-CoA oxidase (a multifunctional protein containing enoyl-CoA hydratase and 3-hy-droxyacyl-CoA dehydrogenase activities) and a 3-oxoacyl-CoA thiolase [30]. These enzymes act in concert to chain shorten acyl-CoAs by removing an acetyl group. A considerable amount of evidence in a number of moths has accumulated to indicate that limited chain shortening occurs in a variety of pheromone biosynthetic pathways. [Pg.106]

In the synthesis route from acetyl-CoA to poly(3HB), at least three steps and three enzymes are involved (Fig. 1). The first step is catalyzed by the 3-keto-thiolase (EC 2.3.1.9) which reversibly links two acetyl-CoA moieties to aceto-acetyl-CoA in a Claisen-condensation. The conversion of acetoacetyl-CoA into D-(-)-3-hydroxybutyryl-CoA can be mediated by a reductase (step 2) or via a sequence catalyzed by a reductase (step 4) and two hydratases (steps 5,6). The last step, i.e., the polymerization, is catalyzed by a polymerase (step 3). This... [Pg.126]

In order to produce PHAs in plants it is necessary to introduce the biosynthetic enzymes from bacteria. PHB represents the best characterized and simplest form of PHA, and the synthetic pathway (Figure 4.2) has been extensively studied in Ralstonia eutropha. 30,31 Starting from acetyl-CoA, a P-ketothiolase is required in order to form acetoacetyl-CoA. This is then reduced by a NADPH-dependent acetoacetyl-CoA reductase, which gives rise to 3-hydroxybutyryl-CoA. The latter intermediate is the substrate for the polymerization reaction catalyzed by polyhydroxybutyrate synthase.30 In Ralstonia eutropha, the thiolase, reductase, and synthase genes make up an operon.31... [Pg.68]

This enzyme [EC 2.3.1.9], also known as thiolase, transfers an acetyl group from one acetyl-CoA molecule to another to form free coenzyme A and acetoacetyl-CoA. [Pg.9]

The fourth and last step of the /3-oxidation cycle is catalyzed by acyl-CoA acetyltransferase, more commonly called thiolase, which promotes reaction of /3-ketoacyl-CoA with a molecule of free coenzyme A to split off the carboxyl-terminal two-carbon fragment of the original fatty acid as acetyl-CoA The other product is the coenzyme A thioester of the fatty acid, now shortened by two carbon atoms (Fig. 17-8a). This reaction is called thiolysis, by analogy with the process of hydrolysis, because the /3-ketoacyl-CoA is cleaved by reaction with the thiol group of coenzyme A... [Pg.638]

Two of the enzymes of /3 oxidation are also regulated by metabolites that signal energy sufficiency. When the [NADH]/[NAD+] ratio is high, /3-hydroxyacyl-CoA dehydrogenase is inhibited in addition, high concentrations of acetyl-CoA inhibit thiolase (Fig. 17-12). [Pg.643]

CoA-requiring cleavage of the resulting /3-ketoacyl-CoA by thiolase, to form acetyl-CoA and a fatty acyl-CoA shortened by two carbons. The shortened fatty acyl-CoA then reenters the sequence. [Pg.650]

Healthy, well-nourished individuals produce ketone bodies at a relatively low rate. When acetyl-CoA accumulates (as in starvation or untreated diabetes, for example), thiolase catalyzes the condensation of two acetyl-CoA molecules to acetoacetyl-CoA, the parent compound of the three ketone bodies The reactions of ketone body formation occur in the matrix of liver mitochondria. The six-carbon compound /3-hydroxy-/3-methylglutaryl-CoA (HMG-CoA) is also an intermediate of sterol biosynthesis, but the enzyme that forms HMG-CoA in that pathway is cytosolic. HMG-CoA lyase is present only in the mitochondrial matrix. [Pg.651]

In extraliepatic tissues, d-/3-hydroxybutyrate is oxidized to acetoacetate by o-/3-hydroxybutyrate dehydrogenase (Fig. 17-19). The acetoacetate is activated to its coenzyme A ester by transfer of CoA from suc-cinyl-CoA, an intermediate of the citric acid cycle (see Fig. 16-7), in a reaction catalyzed by P-ketoacyl-CoA transferase. The acetoacetyl-CoA is then cleaved by thiolase to yield two acetyl-CoAs, which enter the citric acid cycle. Thus the ketone bodies are used as fuels. [Pg.651]

FIGURE 17-19 D-fj-Hydroxybutyrateasafuel. d-/3-Hydroxybutyrate, synthesized in the liver, passes into the blood and thus to other tissues, where it is converted in three steps to acetyl-CoA. It is first oxidized to acetoacetate, which is activated with coenzyme A donated from succinyl-CoA, then split by thiolase. The acetyl-CoA thus formed is used for energy production. [Pg.651]

Stage Synthesis of Mevalonate from Acetate The first stage in cholesterol biosynthesis leads to the intermediate mevalonate (Fig. 21-34). Two molecules of acetyl-CoA condense to form acetoacetyl-CoA, which condenses with a third molecule of acetyl-CoA to yield the six-carbon compound /3-hydroxy-/3-methylglu-taryl-CoA (HMG-CoA). These first two reactions are catalyzed by thiolase and HMG-CoA synthase, respectively. The cytosolic HMG-CoA synthase in this pathway is distinct from the mitochondrial isozyme that catalyzes HMG-CoA synthesis in ketone body formation (see Fig. 17-18). [Pg.817]

At the end of this sequence, the P-oxoacyl-CoA derivative is cleaved (Fig. 17-1, step e) by a thiolase (see also Eq. 13-35). One of the products is acetyl-CoA, which can be catabolized to C02 through the citric acid cycle. The other product of the thiolytic cleavage is an acyl-CoA derivative that is two carbon atoms shorter than the original acyl-CoA. This molecule is recycled through the P oxidation process, a two-carbon acetyl unit being removed as acetyl-CoA during each turn of the cycle (Fig. 17-1). The process continues until the fatty acid chain is completely degraded. [Pg.940]

The sequence of cholesterol biosynthesis begins with a condensation in the cytosol of two molecules of acetyl-CoA in a reaction catalyzed by thiolase (fig. 20.3). The next step requires the enzyme /3-hydroxy-/3-methylglutaryl-CoA (HMG-CoA) synthase. This enzyme catalyzes the condensation of a third acetyl-CoA with /3-ketobutyryl-CoA to yield HMG-CoA. HMG-CoA is then reduced to mevalonate by HMG-CoA reductase. The activity of this reductase is primarily responsible for control of the rate of cholesterol biosynthesis. [Pg.461]


See other pages where Acetyl-CoA thiolase is mentioned: [Pg.529]    [Pg.388]    [Pg.206]    [Pg.93]    [Pg.529]    [Pg.388]    [Pg.206]    [Pg.93]    [Pg.181]    [Pg.219]    [Pg.274]    [Pg.134]    [Pg.70]    [Pg.304]    [Pg.374]    [Pg.135]    [Pg.140]    [Pg.9]    [Pg.731]    [Pg.194]    [Pg.699]    [Pg.414]    [Pg.418]    [Pg.419]    [Pg.61]    [Pg.335]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



Acetyl-CoA

Acetyl-CoA acetylation

Thiolases

© 2024 chempedia.info