Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetyl-CoA biosynthesis

See also Fatty Acids, Table 10.1, Synthesis of Long Chain Fatty Acids, Fatty Acid Desaturation, Palmitate Synthesis from Acetyl-CoA, Biosynthesis of Sphingolipids, 3-Ketosphinganine... [Pg.130]

Whereas catabolism is fundamentally an oxidative process, anabolism is, by its contrasting nature, reductive. The biosynthesis of the complex constituents of the cell begins at the level of intermediates derived from the degradative pathways of catabolism or, less commonly, biosynthesis begins with oxidized substances available in the inanimate environment, such as carbon dioxide. When the hydrocarbon chains of fatty acids are assembled from acetyl-CoA units, activated hydrogens are needed to reduce the carbonyl (C=0) carbon of acetyl-CoA into a —CHg— at every other position along the chain. When glucose is... [Pg.578]

As we began this chapter, we saw that photosynthesis traditionally is equated with the process of COg fixation, that is, the net synthesis of carbohydrate from COg. Indeed, the capacity to perform net accumulation of carbohydrate from COg distinguishes the phototrophic (and autotrophic) organisms from het-erotrophs. Although animals possess enzymes capable of linking COg to organic acceptors, they cannot achieve a net accumulation of organic material by these reactions. For example, fatty acid biosynthesis is primed by covalent attachment of COg to acetyl-CoA to form malonyl-CoA (Chapter 25). Nevertheless, this fixed COg is liberated in the very next reaction, so no net COg incorporation occurs. [Pg.731]

In essence, this series of four reactions has yielded a fatty acid (as a CoA ester) that has been shortened by two carbons, and one molecule of acetyl-CoA. The shortened fatty acyl-CoA can now go through another /3-oxidation cycle, as shown in Figure 24.10. Repetition of this cycle with a fatty acid with an even number of carbons eventually yields two molecules of acetyl-CoA in the final step. As noted in the first reaction in Table 24.2, complete /3-oxidation of palmitic acid yields eight molecules of acetyl-CoA as well as seven molecules of FADHg and seven molecules of NADFI. The acetyl-CoA can be further metabolized in the TCA cycle (as we have already seen). Alternatively, acetyl-CoA can also be used as a substrate in amino acid biosynthesis (Chapter 26). As noted in Chapter 23, however, acetyl-CoA cannot be used as a substrate for gluco-neogenesis. [Pg.789]

Ketone body synthesis occurs only in the mitochondrial matrix. The reactions responsible for the formation of ketone bodies are shown in Figure 24.28. The first reaction—the condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA—is catalyzed by thiolase, which is also known as acetoacetyl-CoA thiolase or acetyl-CoA acetyltransferase. This is the same enzyme that carries out the thiolase reaction in /3-oxidation, but here it runs in reverse. The second reaction adds another molecule of acetyl-CoA to give (i-hydroxy-(i-methyl-glutaryl-CoA, commonly abbreviated HMG-CoA. These two mitochondrial matrix reactions are analogous to the first two steps in cholesterol biosynthesis, a cytosolic process, as we shall see in Chapter 25. HMG-CoA is converted to acetoacetate and acetyl-CoA by the action of HMG-CoA lyase in a mixed aldol-Claisen ester cleavage reaction. This reaction is mechanistically similar to the reverse of the citrate synthase reaction in the TCA cycle. A membrane-bound enzyme, /3-hydroxybutyrate dehydrogenase, then can reduce acetoacetate to /3-hydroxybutyrate. [Pg.798]

The acetyl-CoA derived from amino acid degradation is normally insufficient for fatty acid biosynthesis, and the acetyl-CoA produced by pyruvate dehydrogenase and by fatty acid oxidation cannot cross the mitochondrial membrane to participate directly in fatty acid synthesis. Instead, acetyl-CoA is linked with oxaloacetate to form citrate, which is transported from the mitochondrial matrix to the cytosol (Figure 25.1). Here it can be converted back into acetyl-CoA and oxaloacetate by ATP-citrate lyase. In this manner, mitochondrial acetyl-CoA becomes the substrate for cytosolic fatty acid synthesis. (Oxaloacetate returns to the mitochondria in the form of either pyruvate or malate, which is then reconverted to acetyl-CoA and oxaloacetate, respectively.)... [Pg.804]

Rittenberg and Bloch showed in the late 1940s that acetate units are the building blocks of fatty acids. Their work, together with the discovery by Salih Wakil that bicarbonate is required for fatty acid biosynthesis, eventually made clear that this pathway involves synthesis of malonyl-CoA. The carboxylation of acetyl-CoA to form malonyl-CoA is essentially irreversible and is the committed step in the synthesis of fatty acids (Figure 25.2). The reaction is catalyzed by acetyl-CoA carboxylase, which contains a biotin prosthetic group. This carboxylase is the only enzyme of fatty acid synthesis in animals that is not part of the multienzyme complex called fatty acid synthase. [Pg.805]

Because this enzyme catalyzes the committed step in fatty acid biosynthesis, it is carefully regulated. Palmitoyl-CoA, the final product of fatty acid biosynthesis, shifts the equilibrium toward the inactive protomers, whereas citrate, an important allosteric activator of this enzyme, shifts the equilibrium toward the active polymeric form of the enzyme. Acetyl-CoA carboxylase shows the kinetic behavior of a Monod-Wyman-Changeux V-system allosteric enzyme (Chapter 15). [Pg.806]

FIGURE 25.31 The biosynthesis of 3/ -tneva-lonate from acetyl-CoA. [Pg.833]

Step 1 of Figure 27.7 Claisen Condensation The first step in mevalonate biosynthesis is a Claisen condensation (Section 23.7) to yield acetoacetyl CoA, a reaction catalyzed by acetoacetyl-CoA acetyltransferase. An acetyl group is first bound to the enzyme by a nucleophilic acyl substitution reaction with a cysteine —SH group. Formation of an enolate ion from a second molecule of acetyl CoA, followed by Claisen condensation, then yields the product. [Pg.1072]

The mevalonate pathway for the biosynthesis of isopentenyl diphosphate from three molecules of acetyl CoA. Individual steps are explained in the text. [Pg.1073]

Assume that acetyl CoA containing a 14C isotopic label in the carboxyl carbon atom is used as starting material for the biosynthesis of mevalonate, as shown in Figure 27.7. At what positions in mevalonate would the isotopic label appear ... [Pg.1094]

As a rule, the anabolic pathway by which a substance is made is not the reverse of the catabolic pathway by which the same substance is degraded. The two paths must differ in some respects for both to be energetically favorable. Thus, the y3-oxidation pathway for converting fatty acids into acetyl CoA and the biosynthesis of fatty acids from acetyl CoA are related but are not exact opposites. Differences include the identity of the acvl-group carrier, the stereochemistry of the / -hydroxyacyl reaction intermediate, and the identity of the redox coenzyme. FAD is used to introduce a double bond in jS-oxidalion, while NADPH is used to reduce the double bond in fatty-acid biosynthesis. [Pg.1138]

Step 1 of Figure 29.13 Carboxylation Gluconeogenesis begins with the carboxyl-afion of pyruvate to yield oxaloacetate. The reaction is catalyzed by pyruvate carboxylase and requires ATP, bicarbonate ion, and the coenzyme biotin, which acts as a carrier to transport CO2 to the enzyme active site. The mechanism is analogous to that of step 3 in fatty-acid biosynthesis (Figure 29.6), in which acetyl CoA is carboxylated to yield malonyl CoA. [Pg.1162]

The biosynthetic pathways for sterol biosynthesis have been known for a long time and a brief summary is presented in Scheme l.3 Starting from acetyl CoA (2), acetoacetyl CoA, and... [Pg.673]

HMG-CoA-Reductase Inhibitors. Figure 1 Mechanism of action of statins - cholesterol synthesis pathway. The conversion of acetyl CoA to cholesterol in the liver. The step of cholesterol biosynthesis inhibited by HMG-CoA reductase inhibitors (statins) is shown. [Pg.597]

Acetyl-CoA is also used as the precursor for biosynthesis of long-chain fatty acids steroids, including cholesterol and ketone bodies. [Pg.129]

Although fatty acids are both oxidized to acetyl-CoA and synthesized from acetyl-CoA, fatty acid oxidation is not the simple reverse of fatty acid biosynthesis but an entirely different process taking place in a separate compartment of the cell. The separation of fatty acid oxidation in mitochondria from biosynthesis in the cytosol allows each process to be individually controlled and integrated with tissue requirements. Each step in fatty acid oxidation involves acyl-CoA derivatives catalyzed by separate enzymes, utihzes NAD and FAD as coenzymes, and generates ATP. It is an aerobic process, requiring the presence of oxygen. [Pg.180]

Figure 24-4. Biosynthesis of ether lipids, including plasmalogens, and platelet-activating factor (PAF). In the de novo pathway for PAF synthesis, acetyl-CoA is incorporated at stage, avoiding the last two steps in the pathway shown here. Figure 24-4. Biosynthesis of ether lipids, including plasmalogens, and platelet-activating factor (PAF). In the de novo pathway for PAF synthesis, acetyl-CoA is incorporated at stage, avoiding the last two steps in the pathway shown here.
The biosynthesis of cholesterol may be divided into five steps (l) Synthesis of mevalonate occurs from acetyl-CoA (Figure 26-1). (2) Isoprenoid units are formed... [Pg.219]

Figure 26-3. Biosynthesis of cholesterol. The numbered positions are those of the steroid nucleus and the open and solid circles indicate the fate of each of the carbons in the acetyl moiety of acetyl-CoA. Asterisks Refer to labeling of squalene in Figure 26-2. Figure 26-3. Biosynthesis of cholesterol. The numbered positions are those of the steroid nucleus and the open and solid circles indicate the fate of each of the carbons in the acetyl moiety of acetyl-CoA. Asterisks Refer to labeling of squalene in Figure 26-2.
Production of Malonyl-CoA for the Fatty Acid Biosynthesis. Acetyl-CoA serves as a substrate in the production of malonyl-CoA. There are several routes by which acetyl-CoA is supplied to die cytoplasm. One route is the transfer of acetyl residues from the mitochondrial matrix across the mitochondrial membrane into the cyto-plasm. This process resembles a fatty acid transport and is likewise effected with the participation of carnitine and the enzyme acetyl-CoA-camitine transferase. Another route is the production of acetyl-CoA from citrate. Citrate is delivered from the mitochondria and undergoes cleavage in the cytoplasm by the action of the enzyme ATP-citrate lyase ... [Pg.200]

Three compounds acetoacetate, P-hydroxybutyrate, and acetone, are known as ketone bodies. They are suboxidized metabolic intermediates, chiefly those of fatty acids and of the carbon skeletons of the so-called ketogenic amino acids (leucine, isoleucine, lysine, phenylalanine, tyrosine, and tryptophan). The ketone body production, or ketogenesis, is effected in the hepatic mitochondria (in other tissues, ketogenesis is inoperative). Two pathways are possible for ketogenesis. The more active of the two is the hydroxymethyl glutarate cycle which is named after the key intermediate involved in this cycle. The other one is the deacylase cycle. In activity, this cycle is inferior to the former one. Acetyl-CoA is the starting compound for the biosynthesis of ketone bodies. [Pg.206]

Biosynthesis of cholesterol from acetyl-CoA proceeds, assisted by the enzymes of endoplasmic reticulum and hyaloplasm, in many tissues and organs. This pro-cess is especially active in the liver of adult humans. [Pg.208]

The initial reactions in the first step, prior to the formation of P-hydroxy-p-methylglutaryl-CoA from acetyl-CoA, resemble those involved in ketogenesis with the only distinction that ketogenesis occurs in the mitochondria, while cho-lesterol biosynthesis is carried out extramitochondrially ... [Pg.208]

Ketosis is a pathologic state produced by an excess of ketone bodies in the organism. However, ketosis may be regarded as a lipid metabolism pathology with a certain reserve, since excessive biosynthesis of ketone bodies in the liver is sequent upon an intensive hepatic oxidation not only of fatty acids, but also of keto-genic amino acids. The breakdown of the carbon frameworks of these amino acids leads to the formation of acetyl-CoA and acetoacetyl-CoA, which are used in... [Pg.213]


See other pages where Acetyl-CoA biosynthesis is mentioned: [Pg.488]    [Pg.6]    [Pg.488]    [Pg.6]    [Pg.43]    [Pg.576]    [Pg.817]    [Pg.833]    [Pg.764]    [Pg.1298]    [Pg.423]    [Pg.73]    [Pg.78]    [Pg.123]    [Pg.174]    [Pg.187]    [Pg.219]    [Pg.102]    [Pg.59]    [Pg.203]    [Pg.71]   
See also in sourсe #XX -- [ Pg.90 , Pg.91 ]

See also in sourсe #XX -- [ Pg.31 , Pg.84 , Pg.85 ]




SEARCH



Acetyl-CoA

Acetyl-CoA acetylation

Biosynthesis acetylation

Biosynthesis of Acetyl CoA

© 2024 chempedia.info