Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetals with enol ethers

Hoffmaim-La Roche has produced -carotene since the 1950s and has rehed on core knowledge of vitamin A chemistry for the synthesis of this target. In this approach, a five-carbon homologation of vitamin A aldehyde (19) is accompHshed by successive acetalizations and enol ether condensations to prepare the aldehyde (46). Metal acetyUde coupling with two molecules of aldehyde (46) completes constmction of the C q carbon framework. Selective reduction of the internal triple bond of (47) is followed by dehydration and thermal isomerization to yield -carotene (21) (Fig. 10). [Pg.100]

Reactions of fluoroxytrifluoromethane with enol ethers, enol acetates, and enamines [/, 2, 3] are very useful, especially for the preparation of steroidal ct-fluoTo ketones (Table 2, entries 1, 3, 5, 6, and 7) [7] (equation 12)... [Pg.141]

The hetero Diels-Alder [4+2] cycloaddition (HDA reaction) is a very efficient methodology to perform pyrimidine-to-pyridine transformations. Normal (NHDA) and Inverse (IHDA) cycloaddition reactions, intramolecular as well as intermolecular, are reported, although the IHDA cycloadditions are more frequently observed. The NHDA reactions require an electron-rich heterocycle, which reacts with an electron-poor dienophile, while in the IHDA cycloadditions a n-electron-deficient heterocycle reacts with electron-rich dienophiles, such as 0,0- and 0,S-ketene acetals, S,S-ketene thioacetals, N,N-ketene acetals, enamines, enol ethers, ynamines, etc. [Pg.51]

Mukaiyama aldol reactions have been reported, usually using chiral additives although chiral auxiliaries have also been used. This reaction can also be run with the aldehyde or ketone in the form of its acetal R R C(OR )2> in which case the product is the ether R COCHR2CR R OR instead of 27. Enol acetates and enol ethers also give this product when treated with acetals and TiCLi or a similar catalyst. When the catalyst is dibutyltin bis(triflate), Bu2Sn(OTf)2, aldehydes react, but not their acetals, while acetals of ketones react, but not the ketones themselves. [Pg.1223]

The reactions of benzyne with enol-ethers and enol-acetates have been much studied very recently 115-118). We were not surprised therefore to isolate a product derived from the attack of tetrafluorobenzyne on the bis-enol-ether (75). This product is derived from a (2 + 2) n cycloaddition and the available evidence suggests that this product has the structure (78). [Pg.59]

Nitration of ketones or enol ethers provides a useful method for the preparation of a-nitro ketones. Direct nitration of ketones with HN03 suffers from the formation of a variety of oxidative by-products. Alternatively, the conversion of ketones into their enolates, enol acetates, or enol ethers, followed by nitration with conventional nitrating agents such as acyl nitrates, gives a-nitro ketones (see Ref. 79, a 1980 review). The nitration of enol acetates of alkylated cyclohexanones with concentrated nitric acid in acetic anhydride at 15-22 °C leads to mixtures of cis- and rrans-substituted 2-nitrocyclohexanones in 75-92% yield. 4-Monoalkylated acetoxy-cyclohexanes give mainly m-compounds, and 3-monoalkylated ones yield fra/w-compounds (Eq. 2.40).80... [Pg.16]

Whereas metal-catalyzed decomposition of simple diazoketones in the presence of ketene acetals yields dihydrofurans 121,124,134), cyclopropanes usually result from reaction with enol ethers, enol acetates and silyl enol ethers, just as with unactivated alkenes 13). l-Acyl-2-alkoxycyclopropanes were thus obtained by copper-catalyzed reactions between diazoacetone and enol ethers 79 105,135), enol acetates 79,135 and... [Pg.121]

Considering the above-mentioned facts, according to which simple diazoketones yield dihydrofurans with ketene acetals but cyclopropanes with enol ethers, one exports an interlink between these clear-cut alternatives to exist, i.e. substrates from which both cyclopropanes and dihydrofurans result. In fact, providing an enol ether with a cation-stabilizing substituent in the a-position creates such a situation The Rh2(OAc)4-catalyzed decomposition of -diazoacetophenone in the presence of ethyl vinyl ether produces mainly cyclopropane 82 (R=H), but a small amount of dihydro-... [Pg.122]

The comparison between the cycloaddition behavior of simple diazoketones and of ethyl diazopyruvate 56 towards the same olefin underlines the crucial influence of the ethoxycarbonyl group attached to the carbonyl function. This becomes once again evident when COOEt is replaced by an acetal function, such as in l-diazo-3,3-di-methoxy-2-butanone 86 with enol ethers and acetates, cyclopropanes rather than dihydrofurans are now obtained 113). ... [Pg.123]

Mixture of acetal and enol ether. Acetal with ethylene glycol. [Pg.552]

One of the most reactive electrophilic alkenes is l,l-dicyano-2,2-bis(trifluoromethyl)ethene which undergoes cycloadditions with enol ethers, thioenol ethers, ketene acetals and thioacetals even at temperatures as low as — 78 °C. The cyclobutancs are formed as the sole products of the reaction.37-38 The reactions arc regiospecific and highly stereoselective even though evidence for zwitterionic intermediates have been obtained. [Pg.130]

Recrystallization from water/acetone (even at a basic pH) causes some hydrolysis of the acetal. (2,2-Diethoxyethyl)cobalamin, like all alkyl cobalamins, is light sensitive in solution in addition, and unlike most other alkylcobalamins, it is add sensitive, decomposing to both (formylmethyl)cobalamin and aqua-cobalamin.2 The formation of other alkylcobalamins and cobaloximes by reaction with enol ethers has been described.2... [Pg.139]

Coupling with Silyl Enol Ethers and Silyl Ketene Acetals. Silyl enol ethers can couple to the bromooxazinone to give both the syn and anti diastereomers. - The reaction can proceed via the Sn 1 mechanism discussed above or by a Lewis acid assisted Sn2 displacement of the bromide. The reaction conditions can be manipulated to favor the SnI (stronger Lewis acids, more polar solvents) or Sn2 path (weaker Lewis acids, less polar solvents) (eq 12 and eq 13). ... [Pg.154]

Simple a,3-unsaturated aldehydes, ketones, and esters (R = C02Me H > alkyl, aryl OR equation l)i, 60 preferentially participate in LUMOdiene-controlled Diels-Alder reactions with electron-rich, strained, and selected simple alkene and alkyne dienophiles, - although the thermal reaction conditions required are relatively harsh (150-250 C) and the reactions are characterized by the competitive dimerization and polymerization of the 1-oxa-1,3-butadiene. Typical dienophiles have included enol ethers, thioenol ethers, alkynyl ethers, ketene acetals, enamines, ynamines, ketene aminals, and selected simple alkenes representative examples are detailed in Table 2. - The most extensively studied reaction in the series is the [4 + 2] cycloaddition reaction of a,3-unsaturated ketones with enol ethers and E)esimoni,... [Pg.453]

Ketones/aldehydes, enols, and hemiacetals are all rapidly interconvertible under either acidic or basic conditions, but acetals and enol ethers are rapidly interconvertible with any of these species only under acidic conditions (Table 3.1). It is important for you to be able to recognize that any one of these species is... [Pg.135]

The carbenoid reaction between a-diazo ketones and simple alkenes or styrenes leads to acylcyclopropanes. (For the enantioselective cyclopropanation of styrene with 2-diazo-5,5-dimethylcyclohexane-l,3-dione, see Section 1.2.1.2.4.2.6.3.2.). With ketene acetals, 2,3-dihyd-rofurans are obtained. In contrast, l-acyl-2-oxycyclopropanes or 2-oxy-2,3-dihydrofurans can be formed in reactions with enol ethers and enol acetates the result depends strongly on the substitution pattern of both reaction partners.Whereas simple diazo ketones usually lead to cyclopropanes (Table 15), 3-diazo-2-oxopropanoates and 2-diazo-l,3-dicarbonyl compounds, such as 2-diazoacetoacetates, 3-diazopentane-2,4-dione, and 2-diazo-5,5-dimethylcy-clohexane-1,3-dione, yield 2,3-dihydrofurans and occasionally acyclic structural isomers thereof when reacted with these electron-rich oxy-substituted alkenes. [Pg.471]


See other pages where Acetals with enol ethers is mentioned: [Pg.13]    [Pg.13]    [Pg.16]    [Pg.69]    [Pg.68]    [Pg.189]    [Pg.106]    [Pg.558]    [Pg.65]    [Pg.940]    [Pg.13]    [Pg.505]    [Pg.506]    [Pg.366]    [Pg.668]    [Pg.103]    [Pg.181]    [Pg.5240]    [Pg.264]    [Pg.499]    [Pg.376]    [Pg.1354]    [Pg.260]    [Pg.590]    [Pg.121]    [Pg.655]    [Pg.789]   
See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Acetals ether

Acetals reaction with silyl enol ethers

Acetals, acid catalyzed with silyl enol ethers

Acetate enolates

Acetic ether

Enol acetals

Enol acetates

Enol ethers reaction with acetals

Enol silyl ethers, reaction with acetals/ketals

Montmorillonite clays enol ether, reaction with acetals

Silyl enol ethers with acetals

Tin, triethylmethoxyreaction with isopropenyl acetate preparation of organotin enol ethers

© 2024 chempedia.info