Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetals protection with

The solid appears to be a mixture of the complexes CH,COOH.BF, and 2CH COOH.BF,. The latter appears to be a liquid and is alone soluble in ethylene dichloride the former is a solid. The solid moiioocetic acid complex is obtained by saturating an ethylene dichloride solution of acetic acid with boron trifluoride, filtering and washing the precipitate with the solvent it is hygroscopic and should be protected from moisture. It may be used as required 0-75 mol is employed with 0-26 mol of ketone and 0 6 mol of anhydride. [Pg.865]

Cellulose acetate butyrates with high butyryl content and low viscosity are soluble in inexpensive lacquer solvents. They are widely used in lacquers for protective and decorative coatings appHed to automobiles and wood furniture. [Pg.260]

Many functional groups are stable to alkaline hydrogen peroxide. Acetate esters are usually hydrolyzed under the reaction conditions although methods have been developed to prevent hydrolysis.For the preparation of the 4,5-oxiranes of desoxycorticosterone, hydrocortisone, and cortisone, the alkali-sensitive ketol side chains must be protected with a base-resistant group, e.g., the tetrahydropyranyl ether or the ethylene ketal derivative. Sodium carbonate has been used successfully as a base with unprotected ketol side chains, but it should be noted that some ketols are sensitive to sodium carbonate in the absence of hydrogen peroxide. The spiroketal side chain of the sapogenins is stable to the basic reaction conditions. [Pg.14]

Kelly applied this chemistry to the synthesis of cyclosexipyridine 66. This is an example of an intramolecular variation to this method. Masked enal 65 was prepared and treated with the standard reagents. The acidic medium liberated the aldehyde from its acetal protection. This in situ formation of the reactive species, similar to the above example, then undergoes cyclization to the expected pyridine derivative 66. [Pg.312]

Fluoboric acid is also an efficacious promoter of cyclic oxo-carbenium ions (Scheme 4.24) bearing an activated double bond which, in the presence of open-chain and cyclic dienes, rapidly undergo a Diels-Alder reaction [91]. Chiral a, -unsaturated ketones bearing a -hydroxy substituents, protected as acetals, react with various dienes in the presence of HBF4, affording Diels-Alder adducts that were isolated as alcohols by hydrolysis of the acetal group by TsOH. Some examples of reactions with isoprene are reported in Table 4.23. The enantios-electivity of the reaction is dependent on the size of the substituent R on the of-carbon high levels of asymmetric induction were observed with R = z-Pr (90 1) and R = t-Bu (150 1) and low levels with R = Me (2.7 1) and R = Ph (3.0 1). Scheme 4.24 shows the postulated reaction mechanism. [Pg.187]

A. trans-l,2-Cyclohexanediol. In a 100-ml., round-bottomed flask equipped with a reflux condenser protected with a drying tube are placed a magnetic stirring bar, 17.56 g. (0.0667 mole) of thallium (I) acetate (Note 1), and 40 ml. of dried acetic acid (Note 2). The mixture is stirred and heated at reflux for 1 hour. To the cooled mixture are added 2.84 g. (3.5 ml., 0.0346 mole) of cyclohexene (Note 3) and 8.46 g. (0.0333 mole) of iodine (Note 4). The resulting suspension is stirred and heated at reflux for 9 hours (Note 5), and then cooled to room temperature. The yellow precipitate of thallium(I) iodide is filtered and washed thoroughly with ethyl ether. The filtrates are comhined, the solvents are removed under reduced pressure with a rotary evaporator (Note 6), and the residual liquid is dissolved in dry ethyl ether. The turbid solution is dried with anhydrous potassium carbonate, and the solvent is again removed by rotary evaporation (Note 6), affording 5.4-6.3 g. of trans-1,2-cyclohexanediol diacetate as a mobile, brown liquid (Note 7). [Pg.86]

Stork first demonstrated the utility of protected cyanohydrins as acyl anion equivalents in 1971 [2]. The acetal-protected cyanohydrin 8 was transformed into the corresponding anion with LDA in THF/HMPA, which was then alkylated with a range of alkyl halides, including secondary bromides (Scheme 2). A mild acidic hydrolysis yielded a cyanohydrin, which provided the ketone after treatment with base. The Stork cyanohydrin alkylation and its variants have become important methods in natural product synthesis [3,4]. [Pg.54]

Front-silvered mirrors can be pohshed with optical rouge on a pad of chamois leather over cotton wool. Care is necessary because it is easy to polish completely through the silver. Back-silvered mirrors can be protected by first varnishing the silver and then painting the varnish. Front-silvered mirrors can be protected with a thin coat of lacquer, such as a dilute solution of cellulose nitrate in amyl acetate. The lacquer should not be too thin, or interference colours may be produced. [Pg.48]

B. Pyridine-N-oxide. The acetic acid solution is evaporated on the steam bath under the pressure of a water aspirator, and the residue (180-190 g.) is distilled at a pressure of 1 mm. or less in an apparatus suitable for collecting a solid distillate (Note 5). The vacuum pump must be protected with a Dry Ice trap capable of holding about 60 ml. of acetic acid, which distils as the pyridine-N-oxide acetate dissociates at low pressure. Heat is provided by an oil bath, the temperature of which is not allowed to rise above 130° (Note 6). The product is collected at 100-105°/1 mm. (95-98°/0.5 mm.). The yield is 103-110 g. (78-83%) of colorless solid, m.p. 65-66° (sealed capillary). The base is deliquescent and must be stoppered immediately. [Pg.41]

Zemplen O-deacetylation followed by cleavage of the acetal protecting groups with aqueous TFA afforded G(0) dendron 451, whose reducing end was reductively animated with bismethylamino trisaccharide 452 using cyanoborohydride in 1 1 MeOH-H20 to furnish the G(l) dendron 435 in 48% yield. [Pg.301]

Diastereoselective reduction of the aldol 221/ can be achieved using AIH3 in toluene at —78°C. The corresponding ra-diol is preferentially formed. The diol can be protected with isopropylidene acetal to provide tricyclic compound 222. This can be converted to conformationally rigid C-l ketone 223 by deprotection of the PMB group and successive oxidation with PDC (Scheme 7-73). [Pg.439]


See other pages where Acetals protection with is mentioned: [Pg.13]    [Pg.16]    [Pg.133]    [Pg.145]    [Pg.181]    [Pg.4]    [Pg.84]    [Pg.165]    [Pg.238]    [Pg.456]    [Pg.501]    [Pg.541]    [Pg.762]    [Pg.203]    [Pg.32]    [Pg.80]    [Pg.30]    [Pg.35]    [Pg.50]    [Pg.270]    [Pg.123]    [Pg.17]    [Pg.144]    [Pg.5]    [Pg.138]    [Pg.173]    [Pg.67]    [Pg.174]    [Pg.195]    [Pg.82]    [Pg.220]    [Pg.221]    [Pg.461]    [Pg.30]    [Pg.101]    [Pg.386]    [Pg.566]    [Pg.46]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



Acetals, protection

© 2024 chempedia.info