Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetals alkyl groups

It follows therefore that ethyl malonate can be used (just as ethyl aceto- acetate) to prepare any mono or di-substituted acetic acid the limitations are identical, namely the substituents must necessarily be alkyl groups (or aryl-alkyl groups such as CjHjCHj), and tri-substituted acetic acids cannot be prepared. Ethyl malonate undergoes no reaction equivalent to the ketonic hydrolysis of ethyl acetoacetate, and the concentration of the alkali used for the hydrolysis is therefore not important. [Pg.276]

Alkyl groups attached to aromatic rings are oxidized more readily than the ring in alkaline media. Complete oxidation to benzoic acids usually occurs with nonspecific oxidants such as KMnO, but activated tertiary carbon atoms can be oxidized to the corresponding alcohols (R. Stewart, 1965 D. Arndt, 1975). With mercury(ll) acetate, allyiic and benzylic oxidations are aJso possible. It is most widely used in the mild dehydrogenation of tertiary amines to give, enamines or heteroarenes (M. Shamma, 1970 H. Arzoumanian. 1971 A. Friedrich, 1975). [Pg.120]

Formic acid exhibits many of the typical chemical properties of the aHphatic carboxyHc acids, eg, esterification and amidation, but, as is common for the first member of an homologous series, there are distinctive differences in properties between formic acid and its higher homologues. The smaller inductive effect of hydrogen in comparison to an alkyl group leads, for example, to formic acid = 3.74) being a considerably stronger acid than acetic acid... [Pg.503]

Protonolysis. Simple trialkylboranes are resistant to protonolysis by alcohols, water, aqueous bases, and mineral acids. In contrast, carboxyUc acids react readily with trialkylboranes, removing the first alkyl group at room temperature and the third one at elevated temperatures. Acetic and propionic acids are most often used. The reaction proceeds with retention of configuration of the alkyl group via a cycHc, six-membered transition state (206). [Pg.314]

The iodination reaction can also be conducted with iodine monochloride in the presence of sodium acetate (240) or iodine in the presence of water or methanolic sodium acetate (241). Under these mild conditions functionalized alkenes can be transformed into the corresponding iodides. AppHcation of B-alkyl-9-BBN derivatives in the chlorination and dark bromination reactions allows better utilization of alkyl groups (235,242). An indirect stereoselective procedure for the conversion of alkynes into (H)-1-ha1o-1-alkenes is based on the mercuration reaction of boronic acids followed by in situ bromination or iodination of the intermediate mercuric salts (243). [Pg.315]

Carbon Cha.in Backbone Polymers. These polymers may be represented by (4) and considered derivatives of polyethylene, where n is the degree of polymeriza tion and R is (an alkyl group or) a functional group hydrogen (polyethylene), methyl (polypropylene), carboxyl (poly(acryhc acid)), chlorine (poly(vinyl chloride)), phenyl (polystyrene) hydroxyl (poly(vinyl alcohol)), ester (poly(vinyl acetate)), nitrile (polyacrylonitrile), vinyl (polybutadiene), etc. The functional groups and the molecular weight of the polymers, control thek properties which vary in hydrophobicity, solubiUty characteristics, glass-transition temperature, and crystallinity. [Pg.478]

A kinetic study of the mercuric acetate oxidation of l-alkyl-3,5-dimethyl-piperidines (81) and 3-alkyl-3-azabicyclo[3.3.1]nonanes (82) was made to evaluate the effect of the N-alkyl group on the rate of oxidation and to contrast these two ring systems (70). The maximum factor in the piperidine... [Pg.77]

Glycosides are named by first citing the alkyl group and then replacing the -ose ending of the sugar with -oside. Like all acetals, glycosides are stable to neutral water. They aren t in equilibrium with an open-chain form, and they don t show mutarotation. They can, however, be converted back to the free monosaccharide by hydrolysis with aqueous acid (Section 19.10). [Pg.989]

Compounds with an alkyl group Acetates (also observe m/z 61)... [Pg.323]

From the preceding discussion, it is easily understood that direct polyesterifications between dicarboxylic acids and aliphatic diols (Scheme 2.8, R3 = H) and polymerizations involving aliphatic or aromatic esters, acids, and alcohols (Scheme 2.8, R3 = alkyl group, and Scheme 2.9, R3 = H) are rather slow at room temperature. These reactions must be carried out in the melt at high temperature in the presence of catalysts, usually metal salts, metal oxides, or metal alkoxides. Vacuum is generally applied during the last steps of the reaction in order to eliminate the last traces of reaction by-product (water or low-molar-mass alcohol, diol, or carboxylic acid such as acetic acid) and to shift the reaction toward the... [Pg.61]

The stereochemistry of the silyl ketene acetal can be controlled by the conditions of preparation. The base that is usually used for enolate formation is lithium diisopropyl-amide (LDA). If the enolate is prepared in pure THF, the F-enolate is generated and this stereochemistry is maintained in the silyl derivative. The preferential formation of the F-enolate can be explained in terms of a cyclic TS in which the proton is abstracted from the stereoelectronically preferred orientation perpendicular to the carbonyl plane. The carboxy substituent is oriented away from the alkyl groups on the amide base. [Pg.568]

Silyl enol ethers and silyl ketene acetals also offer both enhanced reactivity and a favorable termination step. Electrophilic attack is followed by desilylation to give an a-substituted carbonyl compound. The carbocations can be generated from tertiary chlorides and a Lewis acid, such as TiCl4. This reaction provides a method for introducing tertiary alkyl groups a to a carbonyl, a transformation that cannot be achieved by base-catalyzed alkylation because of the strong tendency for tertiary halides to undergo elimination. [Pg.863]

In Entry 5, the carbanion-stabilizing ability of the sulfonyl group enables lithiation and is then reductively removed after alkylation. The reagent in Entry 6 is prepared by dilithiation of allyl hydrosulfide using n-bulyl lithium. After nucleophilic addition and S-alkylation, a masked aldehyde is present in the form of a vinyl thioether. Entry 7 uses the epoxidation of a vinyl silane to form a 7-hydroxy aldehyde masked as a cyclic acetal. Entries 8 and 9 use nucleophilic cuprate reagents to introduce alkyl groups containing aldehydes masked as acetals. [Pg.1169]

For the synthesis of permethric acid esters 16 from l,l-dichloro-4-methyl-l,3-pentadiene and of chrysanthemic acid esters from 2,5-dimethyl-2,4-hexadienes, it seems that the yields are less sensitive to the choice of the catalyst 72 77). It is evident, however, that Rh2(OOCCF3)4 is again less efficient than other rhodium acetates. The influence of the alkyl group of the diazoacetate on the yields is only marginal for the chrysanthemic acid esters, but the yield of permethric acid esters 16 varies in a catalyst-dependent non-predictable way when methyl, ethyl, n-butyl or f-butyl diazoacetate are used77). [Pg.97]

Palladium(II) acetate was found to be a good catalyst for such cyclopropanations with ethyl diazoacetate (Scheme 19) by analogy with the same transformation using diazomethane (see Sect. 2.1). The best yields were obtained with monosubstituted alkenes such as acrylic esters and methyl vinyl ketone (64-85 %), whereas they dropped to 10-30% for a,p-unsaturated carbonyl compounds bearing alkyl groups in a- or p-position such as ethyl crotonate, isophorone and methyl methacrylate 141). In none of these reactions was formation of carbene dimers observed. 7>ms-benzalaceto-phenone was cyclopropanated stereospecifically in about 50% yield PdCl2 and palladium(II) acetylacetonate were less efficient catalysts 34 >. Diazoketones may be used instead of diazoesters, as the cyclopropanation of acrylonitrile by diazoacenaph-thenone/Pd(OAc)2 (75 % yield) shows142). [Pg.125]

Fig. 9 Comparison of polar and steric effects of alkyl groups on bromination rates of linear ( ), branched (O) and adamantyl (A) alkenes in acetic acid and in methanol (Ruasse and Zhang, 1984 Ruasse et al., 1990). Polar effects are identical in both solvents [full line, eq. (24)], but steric effects differ. Deviations of branched alkenes are attributed to steric inhibition of nucleophilic solvation by methanol. Fig. 9 Comparison of polar and steric effects of alkyl groups on bromination rates of linear ( ), branched (O) and adamantyl (A) alkenes in acetic acid and in methanol (Ruasse and Zhang, 1984 Ruasse et al., 1990). Polar effects are identical in both solvents [full line, eq. (24)], but steric effects differ. Deviations of branched alkenes are attributed to steric inhibition of nucleophilic solvation by methanol.

See other pages where Acetals alkyl groups is mentioned: [Pg.265]    [Pg.265]    [Pg.188]    [Pg.393]    [Pg.526]    [Pg.38]    [Pg.80]    [Pg.311]    [Pg.20]    [Pg.247]    [Pg.287]    [Pg.38]    [Pg.286]    [Pg.91]    [Pg.778]    [Pg.791]    [Pg.158]    [Pg.159]    [Pg.253]    [Pg.49]    [Pg.350]    [Pg.473]    [Pg.931]    [Pg.191]    [Pg.77]    [Pg.253]    [Pg.20]    [Pg.944]    [Pg.262]    [Pg.307]    [Pg.1135]    [Pg.227]    [Pg.465]    [Pg.142]    [Pg.249]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Acetal group

Acetals alkyl

Acetate groups

Acetous group

Alkyl acetates

© 2024 chempedia.info