Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption particle-specific

The zeta-potential can also be influenced by the absorption of specific ions from the dispersion medium onto the surface of the colloidal particle. For example, if a positively charged surfactant adsorbs onto a positively charged colloidal lyophobic particle, the zeta-potential becomes larger than the Nemst potential. [Pg.370]

Figure Bl.22.1. Reflection-absorption IR spectra (RAIRS) from palladium flat surfaces in the presence of a 1 X 10 Torr 1 1 NO CO mixture at 200 K. Data are shown here for tluee different surfaces, namely, for Pd (100) (bottom) and Pd(l 11) (middle) single crystals and for palladium particles (about 500 A m diameter) deposited on a 100 A diick Si02 film grown on top of a Mo(l 10) single crystal. These experiments illustrate how RAIRS titration experiments can be used for the identification of specific surface sites in supported catalysts. On Pd(lOO) CO and NO each adsorbs on twofold sites, as indicated by their stretching bands at about 1970 and 1670 cm, respectively. On Pd(l 11), on the other hand, the main IR peaks are seen around 1745 for NO (on-top adsorption) and about 1915 for CO (tlueefold coordination). Using those two spectra as references, the data from the supported Pd system can be analysed to obtain estimates of the relative fractions of (100) and (111) planes exposed in the metal particles [26]. Figure Bl.22.1. Reflection-absorption IR spectra (RAIRS) from palladium flat surfaces in the presence of a 1 X 10 Torr 1 1 NO CO mixture at 200 K. Data are shown here for tluee different surfaces, namely, for Pd (100) (bottom) and Pd(l 11) (middle) single crystals and for palladium particles (about 500 A m diameter) deposited on a 100 A diick Si02 film grown on top of a Mo(l 10) single crystal. These experiments illustrate how RAIRS titration experiments can be used for the identification of specific surface sites in supported catalysts. On Pd(lOO) CO and NO each adsorbs on twofold sites, as indicated by their stretching bands at about 1970 and 1670 cm, respectively. On Pd(l 11), on the other hand, the main IR peaks are seen around 1745 for NO (on-top adsorption) and about 1915 for CO (tlueefold coordination). Using those two spectra as references, the data from the supported Pd system can be analysed to obtain estimates of the relative fractions of (100) and (111) planes exposed in the metal particles [26].
Cement and Concrete Concrete is an aggregate of inert reinforcing particles in an amorphous matrix of hardened cement paste. Concrete made of portland cement has limited resistance to acids and bases and will fail mechanically following absorption of crystalforming solutions such as brines and various organics. Concretes made of corrosion-resistant cements (such as calcium aluminate) can be selected for specific chemical exposures. [Pg.2457]

The secondary source of fine particles in the atmosphere is gas-to-particle conversion processes, considered to be the more important source of particles contributing to atmospheric haze. In gas-to-particle conversion, gaseous molecules become transformed to liquid or solid particles. This phase transformation can occur by three processes absortion, nucleation, and condensation. Absorption is the process by which a gas goes into solution in a liquid phase. Absorption of a specific gas is dependent on the solubility of the gas in a particular liquid, e.g., SO2 in liquid H2O droplets. Nucleation and condensation are terms associated with aerosol dynamics. [Pg.145]

As with other diffraction techniques (X-ray and electron), neutron diffraction is a nondestructive technique that can be used to determine the positions of atoms in crystalline materials. Other uses are phase identification and quantitation, residual stress measurements, and average particle-size estimations for crystalline materials. Since neutrons possess a magnetic moment, neutron diffraction is sensitive to the ordering of magnetically active atoms. It differs from many site-specific analyses, such as nuclear magnetic resonance, vibrational, and X-ray absorption spectroscopies, in that neutron diffraction provides detailed structural information averaged over thousands of A. It will be seen that the major differences between neutron diffraction and other diffiaction techniques, namely the extraordinarily... [Pg.648]

Carbon blacks are synthetic materials which essentially contain carbon as the main element. The structure of carbon black is similar to graphite (hexagonal rings of carbon forming large sheets), but its structure is tridimensional and less ordered. The layers of carbon blacks are parallel to each other but not arranged in order, usually forming concentric inner layers (turbostratic structure). Some typical properties are density 1.7-1.9 g/cm pH of water suspension 2-8 primary particle size 14-250 nm oil absorption 50-300 g/100 g specific surface area 7-560 m /g. [Pg.636]

Fillers. Fillers are not commonly added to CR adhesives. Calcium carbonate or clay can be primarily added to reduce cost in high-solids CR mastics. Maximum bond strength is obtained using fillers with low particle size (lower than 5 [jim) and intermediate oil absorption (30 g/100 g filler). In general, fillers reduce the specific adhesion and cohesion strength of adhesive films. Although polychloroprene is inherently flame retardant, aluminium trihydrate, zinc borate, antimony trioxide or... [Pg.665]

Fig. 20. Absorption spectra of CdS sols of different particle sizes Gower part) and the change in specific absorbance As at 300 ps after the pulse (upper part), mean agglomeration number (a) = 266, (b) = 94 2 )... Fig. 20. Absorption spectra of CdS sols of different particle sizes Gower part) and the change in specific absorbance As at 300 ps after the pulse (upper part), mean agglomeration number (a) = 266, (b) = 94 2 )...

See other pages where Absorption particle-specific is mentioned: [Pg.629]    [Pg.445]    [Pg.44]    [Pg.94]    [Pg.89]    [Pg.6]    [Pg.415]    [Pg.629]    [Pg.476]    [Pg.269]    [Pg.504]    [Pg.361]    [Pg.770]    [Pg.350]    [Pg.43]    [Pg.150]    [Pg.9]    [Pg.487]    [Pg.321]    [Pg.530]    [Pg.58]    [Pg.604]    [Pg.632]    [Pg.632]    [Pg.633]    [Pg.634]    [Pg.634]    [Pg.635]    [Pg.636]    [Pg.637]    [Pg.435]    [Pg.1291]    [Pg.17]    [Pg.169]    [Pg.405]    [Pg.430]    [Pg.274]    [Pg.276]    [Pg.63]    [Pg.16]    [Pg.317]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Specific absorption

Spectroscopy absorption, particle-specific

© 2024 chempedia.info