Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorbed light measurement

The polymers presented in Chart 8.1 absorb UV light to quite different extents. Nucleic acids absorb more strongly than proteins. This can be seen in Fig. 8.1, which shows absorption spectra of aqueous solutions of DNA and bovine serum albumin, recorded at equal concentrations. In contrast to the rather strongly absorbing nucleotide residues in DNA, only a few of the amino acid residues in proteins absorb light measurably in the UV region. This pertains mainly to the aromatic amino acids phenylalanine, tyrosine, and tryptophan (see Chart 8.2). [Pg.207]

A technique is any chemical or physical principle that can be used to study an analyte. Many techniques have been used to determine lead levels. For example, in graphite furnace atomic absorption spectroscopy lead is atomized, and the ability of the free atoms to absorb light is measured thus, both a chemical principle (atomization) and a physical principle (absorption of light) are used in this technique. Chapters 8-13 of this text cover techniques commonly used to analyze samples. [Pg.36]

Absorbance. Analyte measurements in clinical analyzers using Hquid reagents are most commonly performed by transmission of light, ie, by absorbance photometry or colorimetry (Fig. 3a). The Hquid to be analyzed is either held in a cuvette or passed through a flowceU having transparent walls. [Pg.394]

The study of quantum yields. The quantum yield is the fraction of absorbed light that goes to produce a particular result. There are several types. A primary quantum yield for a particular process is the fraction of molecules absorbing light that undergo that particular process. Thus, if 10% of all the molecules that are excited to the state cross over to the T state, the primary quantum yield for that process is 0.10. However, primary quantum yields are often difficult to measure. A product quantum yield (usually designated ) for a product P that is formed from a photoreaction of an initially excited molecule A can be expressed as... [Pg.322]

Schematic representation of an apparatus that measures the absorption spectrum of a gaseous element. The gas in the tube absorbs light at specific wavelengths, called lines, so the intensity of transmitted light is low at these particular wavelengths. Schematic representation of an apparatus that measures the absorption spectrum of a gaseous element. The gas in the tube absorbs light at specific wavelengths, called lines, so the intensity of transmitted light is low at these particular wavelengths.
Because a chlorophyll molecule contains a closed circuit of ten conjugated double bounds to absorb light, spectrophotometric (UV-Vis) and fluorometric measurements are satisfactory to identify and estimate amounts of chlorophyll a and chlorophyll b, usually the only ones present in fresh plant extracts. The basis of numerous spectrophotometric determinations reported in literature is that chlorophylls strongly absorb at 500 to 700 nm in the visible region and show a large typical band around 400 nm. [Pg.434]

IR absorbance was measured with a Fourier-transform IR spectrometer. The absorbance at wave number a is defined as (1 /TV) In [F(U0)/ F(U)], where N 10 is the number of useful reflections at the electrochemical interface, F(U) the light intensity at wave number a reaching the detector at potential U, and F(U0) the same but under reference conditions at potential U0. [Pg.47]

The amount of fluorescence emitted by a fluorophore is determined by the efficiencies of absorption and emission of photons, processes that are described by the extinction coefficient and the quantum yield. The extinction coefficient (e/M-1 cm-1) is a measure of the probability for a fluorophore to absorb light. It is unique for every molecule under certain environmental conditions, and depends, among other factors, on the molecule cross section. In general, the bigger the 7c-system of the fluorophore, the greater is the probability that the photon hitting the fluorophore is absorbed. Common extinction coefficient values of fluorophores range from 25,000 to 200,000 M 1 cm-1 [4],... [Pg.239]

Some simple rearrangement of Equation 3.1 leads to the concepts of transmission T = Io/1 and absorbance A = — log T, with the quantity s c l called the optical density. The choice of units here for the extinction coefficient (M-1 cm-1) is appropriate for measurement of the absorbance of a solution in the laboratory but not so appropriate for a distance Z of astronomical proportions. The two terms and c are contracted to form the absorption per centimetre, a, or, more conveniently (confusingly) in astronomy, per parsec. The intrinsic ability of a molecule or atom to absorb light is described by the extinction coefficient s, and this can be calculated directly from the wavefunction using quantum mechanics, although the calculation is hard. [Pg.43]


See other pages where Absorbed light measurement is mentioned: [Pg.171]    [Pg.526]    [Pg.622]    [Pg.509]    [Pg.442]    [Pg.23]    [Pg.379]    [Pg.393]    [Pg.404]    [Pg.101]    [Pg.283]    [Pg.99]    [Pg.147]    [Pg.660]    [Pg.69]    [Pg.392]    [Pg.98]    [Pg.6]    [Pg.59]    [Pg.213]    [Pg.118]    [Pg.32]    [Pg.288]    [Pg.118]    [Pg.804]    [Pg.38]    [Pg.379]    [Pg.129]    [Pg.5]    [Pg.80]    [Pg.36]    [Pg.340]    [Pg.74]    [Pg.203]    [Pg.130]    [Pg.425]    [Pg.114]    [Pg.198]    [Pg.44]   
See also in sourсe #XX -- [ Pg.223 ]

See also in sourсe #XX -- [ Pg.223 ]




SEARCH



© 2024 chempedia.info