Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absolute values approach

Absolute entropy and enthalpy of forma tlon of coal liquids, 374-82 Absolute values approach, 190-91 Absorption of solar energy, 396-97 Accounting method, entropy generation, 220... [Pg.448]

The chemical potential, plays a vital role in both phase and chemical reaction equiUbria. However, the chemical potential exhibits certain unfortunate characteristics which discourage its use in the solution of practical problems. The Gibbs energy, and hence is defined in relation to the internal energy and entropy, both primitive quantities for which absolute values are unknown. Moreover, p approaches negative infinity when either P or x approaches 2ero. While these characteristics do not preclude the use of chemical potentials, the appHcation of equiUbrium criteria is faciUtated by the introduction of a new quantity to take the place of p but which does not exhibit its less desirable characteristics. [Pg.494]

Favorable Vapoi Liquid Equilibria. The suitabiHty of distiUation as a separation method is strongly dependent on favorable vapor—Hquid equiHbria. The absolute value of the key relative volatiHties direcdy determines the ease and economics of a distillation. The energy requirements and the number of plates required for any given separation increase rapidly as the relative volatiHty becomes lower and approaches unity. For example given an ideal binary mixture having a 50 mol % feed and a distillate and bottoms requirement of 99.8% purity each, the minimum reflux and minimum number of theoretical plates for assumed relative volatiHties of 1.1,1.5, and 4, are... [Pg.175]

Cauchy s Root Test. If the /ith root of the absolute value of the /ith term, as n becomes unbounded, approaches... [Pg.450]

If necessary, the fit can be improved by increasing the order of the polynomial part of Eq. (9-89), so that this approach provides a veiy flexible method of simulation of a cumulative-frequency distribution. The method can even be extended to J-shaped cui ves, which are characterized by a maximum frequency at x = 0 and decreasing frequency for increasing values of x, by considering the reflexion of the cui ve in the y axis to exist. The resulting single maximum cui ve can then be sampled correctly by Monte Carlo methods if the vertical scale is halved and only absolute values of x are considered. [Pg.824]

It has been shown [56] that if we measure the areas under the approach and retract curves of the force-distance plot we can get quantitative values of the resilience. Resilience is closely related to the ability of the polymer chain to rotate freely, and thus will be affected by rate and extent of deformation, as well as temperature. Different materials will respond differently to changes in these variables [46] hence, changing the conditions of testing will result in a change in absolute values of resilience and may even result in a change in ranking of the materials. Compared to more traditional methods of resilience measurement such as the rebound resiliometer or a tensUe/compression tester. [Pg.267]

It follows from the definition cited that the size of the zeta potential depends on the structure of the diffuse part of the ionic EDL. At the outer limit of the Helmholtz layer (at X = X2) the potential is j/2, in the notation adopted in Chapter 10. Beyond this point the potential asymptotically approaches zero with increasing distance from the surface. The slip plane in all likelihood is somewhat farther away from the electrode than the outer Helmholtz layer. Hence, the valne of agrees in sign with the value of /2 but is somewhat lower in absolute value. [Pg.598]

The goal in this chapter has been to show that it is possible to perform simulations relevant to electrochemistry-based ab initio surface calculations, without including all known physical effects. Focusing on trends and differences rather than absolute values, the approach in some cases yields not only qualitative results, but also (semi)-quantitative predictions. [Pg.87]

It follows from previous discussion that the destabilizing electrostatic contribution grows in absolute value with x (with increasing A.). But the influence of the nonuniform electrical force is overwhelmed by the stabilizing bending and stretching contributions. As a result, the traditional smectic model cannot explain how a small transmembrane voltage can lead to membrane breakdown. The obvious solution is to abandon this approach and to develop an alternative, such as the pore formation model. However, as we noticed before, this approach postulates rather than proves the appearance of hydrophobic pores. [Pg.88]

This is an expression of Nernst s postulate which may be stated as the entropy change in a reaction at absolute zero is zero. The above relationships were established on the basis of measurements on reactions involving completely ordered crystalline substances only. Extending Nernst s result, Planck stated that the entropy, S0, of any perfectly ordered crystalline substance at absolute zero should be zero. This is the statement of the third law of thermodynamics. The third law, therefore, provides a means of calculating the absolute value of the entropy of a substance at any temperature. The statement of the third law is confined to pure crystalline solids simply because it has been observed that entropies of solutions and supercooled liquids do not approach a value of zero on being cooled. [Pg.245]

Plotting the overpotential against the decadic logarithm of the absolute value of the current density yields the Tafel plot (see Fig. 5.3). Both branches of the resultant curve approach the asymptotes for r RT/F. When this condition is fulfilled, either the first or second exponential term on the right-hand side of Eq. (5.2.28) can be neglected. The electrode reaction then becomes irreversible (cf. page 257) and the polarization curve is given by the Tafel equation... [Pg.271]

The bias-correction is necessary to correct both the absolute magnitude and the seasonal cycle to that of the observations. This approach assumes that the same model biases persist in the future climate and thus GCMs more accurately simulate relative change than absolute values. It provides a correction of monthly mean climate only and does not correct biases in higher order statistics including the simulation of extreme events and persistence. [Pg.308]

The absolute value of the entropy of a compound is obtained directly by integration of the heat capacity from 0 K. The main contributions to the heat capacity and thus to the entropy are discussed in this chapter. Microscopic descriptions of the heat capacity of solids, liquids and gases range from simple classical approaches to complex lattice dynamical treatments. The relatively simple models that have been around for some time will be described in some detail. These models are, because of their simplicity, very useful for estimating heat capacities and for relating the heat capacity to the physical and chemical... [Pg.229]


See other pages where Absolute values approach is mentioned: [Pg.198]    [Pg.633]    [Pg.97]    [Pg.198]    [Pg.633]    [Pg.97]    [Pg.837]    [Pg.2369]    [Pg.21]    [Pg.35]    [Pg.186]    [Pg.362]    [Pg.362]    [Pg.841]    [Pg.842]    [Pg.223]    [Pg.128]    [Pg.138]    [Pg.162]    [Pg.111]    [Pg.133]    [Pg.184]    [Pg.195]    [Pg.48]    [Pg.258]    [Pg.131]    [Pg.126]    [Pg.140]    [Pg.319]    [Pg.259]    [Pg.53]    [Pg.78]    [Pg.38]    [Pg.44]    [Pg.8]    [Pg.288]    [Pg.229]    [Pg.83]   


SEARCH



© 2024 chempedia.info