Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absolute configuration specification

Galano, J. M., Audran, G., Monti, H. First enantioselective total synthesis of both enantiomers of lancifolol. Correlation absolute configuration/specific rotation. Tetrahedron Lett 2001,42, 6125-6128. [Pg.651]

Although the absolute configurations of the products are opposite to that of antiinflammatory active compounds, and the substrate specificity is rather restricted as to the steric bulkiness around the reaction center, the enzyme system of A. bronchisepticus was proved to have a unique reactivity. Thus, detailed studies on the isolated enzyme were expected to elucidate some new interesting mechanism of the new type of decarboxylation. Thus, the enzyme was purified. (The enzyme is now registered as EC 4.1.1.76.) The molecular mass was about 24kDa. The enzyme was named as arylmalonate decarboxylase (AMDase), as the rate of the decarboxylation of phenylmalonic acid was faster than that of the a-methyl derivative. ... [Pg.311]

The structures of these bases have been established mainly on the grounds of their physicochemical data and have been confirmed by synthesis. In Table II the melting points, specific rotations, absolute configurations, and IR and UV spectral features are collected. [Pg.235]

M Determined by HPLC analysis using DAICEL CHIRACEL AD-H (hexane/2-propanol 9 1). M Absolute configuration was determined by comparison of the sign of specific optical rotation with the reported one. idl Reaction was carried out at room temperature. t l Reaction was carried out at 0 °C. [Pg.457]

Optically active telluronium ylides were not obtained for a long time. Optically active diastereomeric telluronium ylides 7 were obtained for the first time in 1995 by fractional recrystallization of the diastereomeric mixture.19 The absolute configurations of the chiral telluronium ylides were determined by comparing their specific rotations and circular dichroism spectra with those of the corresponding selenonium ylide with known absolute configuration. The telluronium ylides were found to be much more stable toward racemization than the sulfonium and selenonium ylides (Scheme 4). [Pg.579]

On the other hand, telluronium imides 13 were isolated for the first time in 2002 by optical resolution of their racemic samples on an optically active column by medium-pressure column chromatography.27 The relationship between the absolute configurations and the chiroptical properties was clarified on the basis of their specific rotations and circular dichroism spectra. The racemization mechanism of the optically active telluronium imides, which involved the formation of corresponding telluroxides by hydrolysis of the telluronium imides, was proposed (Scheme 6). [Pg.581]

The wavelength dependence of specific rotation and/or molecular ellipticity is called the Cotton effect. The Cotton effect can provide a wealth of information on relative or absolute configurations. The sign of the Cotton effect reflects the stereochemistry of the environment of the chromophore. By comparing the Cotton effect of a compound of known absolute configuration with that of a structurally similar compound, it is possible to deduce the absolute configuration or conformation of the latter. [Pg.34]

The use of a reference axial system, whether right- or left-handed, is completely analogous to the Cahn, Ingold, and Prelog convention (75-77) regarding the specification of the absolute configuration of chiral molecules R and S as depicted in Scheme 11 for molecules with large (L), medium (M), and small... [Pg.39]

An interesting example of a chemical method for determining the absolute configuration of diastereomeiic a-phenylethyl p-tolyl sulfoxides 195 based on the stereospecific sulfinate-sulfoxide conversion has been reported by Nishio and Nishihata (206). In this work optically active a-phenylethyl p-tolyl sulfoxides 195 and the corresponding sulfones 196 were prepared in two different ways and their specific rotations compared (see Scheme 18). Thus, oxidation of (-H5c) Phenylethyl p-tolyl sulfide 197 with hydrogen peroxide... [Pg.391]

It must not be forgotten that the concept of pure substance, referred to earlier, is very rigorous and must take into account, not just the constitution and relative configuration of a molecule, but also the absolute configuration of each chiral center that may present. For example, again in relation to quinine (i), quinidine (2) is also known and the only difference between the two molecules is the disposition in space of the groups bonded to C(8). Nevertheless 2 is a different molecule and shows no antimalarial activity. In addition, only one enantiomer of quinine (1), the laevorotatory, corresponds to the natural compound and manifests the specific physiological properties associated with this substance. [Pg.8]

To elucidate the metabolic pathway of phenylmalonic acid, the incubation broth of A. bronchisepticus on phenylmalonic acid was examined at the early stage of cultivation. After a one-day incubation period, phenylmalonic acid was recovered in 80% yield. It is worthy of note that the supposed intermediate, mandelic acid, was obtained in 1.4% yield, as shown in Eq. (8). The absolute configuration of this oxidation product was revealed to be S. After 2 days, no metabolite was recovered from the broth. It is highly probable that the intermediary mandelic acid is further oxidized via benzoylformic acid. As the isolated mandelic acid is optically active, the enzyme responsible for the oxidation of the acid is assumed to be S-specific. If this assumption is correct, the enzyme should leave the intact l -enantiomer behind when a racemic mixture of mandelic acid is subjected to the reaction. This expectation was nicely realized by adding the racemate of mandelic acid to a suspension of A. bronchisepticus after a 4-day incubation [4]. [Pg.4]

In order to obtain more information on the reaction intermediate, the stereochemical course of the reaction was investigated. The absolute configuration of the product from a-methyl-a-phenylmalonic acid was unambiguously determined to be R, based on the sign of specific rotation. Then, which carboxyl group remains in the propionic acid and which is released as carbon dioxide To solve this problem we have to distinguish between two prochiral carboxyl... [Pg.20]

Combination of the Hantzsch ester mediated transfer hydrogenation together with chlorine (116) or fluorine (117) electrophiles allows for the formal addition of HCl or HF aaoss a double bond in a catalytic asymmetric manner (Scheme 48) [178], Within this paper the reactions were further refined by the use of two cycle-specific secondary amines which effectively operated independently within the same reaction mixture. Impressively, this allowed access to either diastereoisomer of the product depending upon the absolute configuration of the catalyst used in the second step of the sequence. [Pg.319]

With the exception of alanine, all of the naturally occurring amino acids contain a chiral carbon adjacent to the amino acid grouping. All of these amino acids are of the 1 or L form, meaning they rotate light in a negative direction. The rules governing the specification of the absolute configuration are such that you can get both S and R forms of the amino acids. Thus L-phenylalanine is an S enantiomer while L-cysteine is an R enantiomer. [Pg.707]

Oxidative coupling of (5)-(-)-laudanosoline (5) with horseradish peroxidase in the presence of hydrogen peroxide, studied by Brossi et al. (27), afforded dibenzopyrrocoline (—)-6 in 81% yield, and conversion to (5)-(—)-0-meth-ylcryptaustoline (14) by methylation provided additional proof for the absolute configuration of this and related alkaloids. Enzyme specificity in the C— coupling reaction was demonstrated with similar oxidation of (/ )-(—)-laudanosoline methiodide, which afforded an aporphine converted by O-meth-ylation to (R)-(-)-glaucine. [Pg.110]

The second dimeric base, (—)-pennsylpavoline (179), was shown to correspond to C-l-demethylpennsylpavine. Specifically, its NMR spectrum was devoid of the 8 3.71 singlet which represents the C-1 methoxyl absorption in (—)-pennsylpavine (178). Evaluation of CD spectra of these novel dimers and comparison with those of the aporphine (+)-A -methyllaurotetanine and the pavine (—)-platycerine led to the assignment of the absolute configurations as depicted in expressions 178 and 179. These dimers are probably derived biosynthetically from the aporphine-benzylisoquinoline dimers, (-)-pennsylvanine and (-)-pennsylvanamine, which were found in the same plant (7,173). [Pg.382]


See other pages where Absolute configuration specification is mentioned: [Pg.49]    [Pg.61]    [Pg.562]    [Pg.101]    [Pg.187]    [Pg.127]    [Pg.155]    [Pg.114]    [Pg.285]    [Pg.582]    [Pg.586]    [Pg.49]    [Pg.31]    [Pg.104]    [Pg.5]    [Pg.107]    [Pg.313]    [Pg.82]    [Pg.158]    [Pg.279]    [Pg.387]    [Pg.66]    [Pg.657]    [Pg.33]    [Pg.94]    [Pg.260]    [Pg.290]    [Pg.381]    [Pg.47]    [Pg.56]    [Pg.80]    [Pg.117]    [Pg.191]    [Pg.24]    [Pg.922]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Absolute configuration

Absolute specificity

Configuration Specification

© 2024 chempedia.info