Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A-Alumina

A higher density sol—gel abrasive, produced by the introduction of seed crystaUites formed by wet-milling with high alumina media or by introduction of submicrometer a-alumina particles, was patented (28) and designated Norton SG. The microstmcture of this abrasive consists of submicrometer a-alumina crystals (Fig. 1) and its bulk density approaches that of fused alumina. Norton SG has proven to be an exceptional performer in coated and bonded abrasive products it was awarded the 1989 ASM Engineering Materials Achievement Award (29). [Pg.11]

Testing. Chemical analyses are done on all manufactured abrasives, as well as physical tests such as sieve analyses, specific gravity, impact strength, and loose poured density (a rough measure of particle shape). Special abrasives such as sintered sol—gel aluminas require more sophisticated tests such as electron microscope measurement of a-alumina crystal si2e, and indentation microhardness. [Pg.13]

R. K. Obedander ia B. E. Leach, A., Aluminas for Catalysis Their Preparation and Properties, Vol. 3, Applied Industrial Catalysis, Academic Press, New York, 1984, pp. 98-102. [Pg.157]

Flame retardants such as a-alumina trihydrate [14762-49-3] can be added to latex-based foamed carpet backing a combination of antimony oxide [1309-64-4] and chlorinated paraffins is used in dry mbber. [Pg.228]

An abrasive is usually chemically inert, neither interacting with other dentifrice ingredients nor dissolving in the paste or the mouth. Substances used as dentifrice abrasives include amorphous hydrated silica, dicalcium phosphate dihydrate [7789-77-7] anhydrous dicalcium phosphate [7757-93-9] insoluble sodium metaphosphate [10361-03-2], calcium pyrophosphate [35405-51-7], a-alumina trihydrate, and calcium carbonate [471-34-1]. These materials are usually synthesized to specifications for purity, particle size, and other characteristics naturally occurring minerals are used infrequently. Sodium bicarbonate [144-55-8] and sodium chloride [7647-14-5] have also been employed as dentifrice abrasives. [Pg.501]

JS/oble Metals. Noble or precious metals, ie, Pt, Pd, Ag, and Au, are ftequendy alloyed with the closely related metals, Ru, Rh, Os, and Ir (see Platinum-GROUP metals). These are usually supported on a metal oxide such as a-alumina, a-Al202, or siUca, Si02. The most frequently used precious metal components are platinum [7440-06-4J, Pt, palladium [7440-05-3] Pd, and rhodium [7440-16-6] Rh. The precious metals are more commonly used because of the abiUty to operate at lower temperatures. As a general rule, platinum is more active for the oxidation of paraffinic hydrocarbons palladium is more active for the oxidation of unsaturated hydrocarbons and CO (19). [Pg.503]

Eigure 3.56 depicts LEIS spectra for two completely different types of AI2O3 sample, i. e. a-alumina (sapphire) and y-alumina (a powder with high specific surface area) which show very similar results in both cases after thermal treatment at 400 °C [3.142]. Reduction of the A1 signal in y-alumina was ascribed to shielding by hydroxyl groups formed by water molecules, which are typical adsorbates on y-alu-mina. [Pg.155]

The transition from non-protective internal oxidation to the formation of a protective external alumina layer on nickel aluminium alloys at 1 000-1 300°C was studied by Hindam and Smeltzer . Addition of 2% A1 led to an increase in the oxidation rate compared with pure nickel, and the development of a duplex scale of aluminium-doped nickel oxide and the nickel aluminate spinel with rod-like internal oxide of alumina. During the early stages of oxidation of a 6% A1 alloy somewhat irreproducible behaviour was observed while the a-alumina layer developed by the coalescence of the rodlike internal precipitates and lateral diffusion of aluminium. At a lower temperature (800°C) Stott and Wood observed that the rate of oxidation was reduced by the addition of 0-5-4% A1 which they attributed to the blocking action of internal precipitates accumulating at the scale/alloy interface. At higher temperatures up to 1 200°C, however, an increase in the oxidation rate was observed due to aluminium doping of the nickel oxide and the inability to establish a healing layer of alumina. [Pg.1054]

The cell is hermetically sealed. This is performed by a glass connection from the / "-alumina ceramic tube to a ring of a-alumina. Metal parts are connected to the a -alumina by thermocompression bonding and the metal parts are either con-... [Pg.566]

For the cathode seal material, there is a criterion that the thermal expansion coefficient of the metal component must be lower than that of the a-alumina header. A nickel-cobalt-iron alloy (NiloK) with a... [Pg.575]

The difficulty of obtaining pure / "-material for the electrolyte has been tackled in many production processes worked out in the past. Unless precautions are taken, sintering of a -alumina-derived / "-alumina compositions invariably results in the duplex microstructure and a low-strength ceramic. Therefore a balance has to be struck between conductivity and strength. The problem arises because the conversion from —alumina to / " -alumina is slow... [Pg.578]

Aluminum oxide, A1203, is known almost universally as alumina. It exists with a variety of crystal structures, many of which form important ceramic materials (see Section 14.22). As a-alumina, it is the very hard, stable, crystalline substance corundum impure microcrystalline corundum is the purple-black abrasive known as emery. Some impure forms of alumina are beautiful, rare, and highly prized (Fig. 14.25). A less dense and more reactive form of the oxide is y-alumina. This form absorbs water and is used as the stationary phase in chromatography. [Pg.720]

FIGURE 14.25 Some of the impure forms of a-alumina are prized as gems, (a) Ruby is alumina with Cr3+ in place of some AIJ+ ions, (b) Sapphire is alumina with Fe33 and Ti43 impurities, (c) Topaz is alumina with Fe3+ impurities. [Pg.720]

Allyl propyl disulphide a-Alumina, see Aluminium oxide Aluminium as Al Metal dust Pyro powders Welding (umes Soluble salts Alkyls (NOC)... [Pg.78]

Alumina - Alumina forms a variety of oxides and hydroxides whose structures have been characterized by X-ray diffraction (16). From the catalytic viewpoint y-alumina is the most important. This is a metastable phase that is produced from successive dehydration of aluminum trihydroxide (gibbsite) to aluminum oxide hydroxide (boehmite) to y-alumina, or from dehydration of boehmite formed hydrothermally. y-alumina is converted into a-alumina (corundum) at temperatures around 1000 C. [Pg.455]

The infrared spectra for various aluminum oxides and hydroxides are shown in Figure 3. Figure 3a is a-alumina (Harshaw A13980), ground to a fine powder with a surface area of 4 m /g. The absorption between 550 and 900 cm is due to two overlapping lattice modes, and the low frequency band at 400 cm is due to another set of lattice vibrations. These results are similar to those obtained by reflection measurements, except that the powder does not show as... [Pg.455]

The results obtained for the various aluminum oxides and hydroxides indicate that infrared photoacoustic spectroscopy may be useful in characterizing structural transformations in these species. Very clear differences between a-alumina and y-alumina were noted in the region of the lattice vibrations. The monohydrate, boehmite, showed a very distinct Al-OH stretching feature at 1070... [Pg.460]


See other pages where A-Alumina is mentioned: [Pg.188]    [Pg.72]    [Pg.81]    [Pg.33]    [Pg.33]    [Pg.33]    [Pg.7]    [Pg.99]    [Pg.159]    [Pg.160]    [Pg.160]    [Pg.24]    [Pg.24]    [Pg.24]    [Pg.24]    [Pg.259]    [Pg.136]    [Pg.502]    [Pg.458]    [Pg.314]    [Pg.149]    [Pg.1054]    [Pg.567]    [Pg.575]    [Pg.577]    [Pg.379]    [Pg.380]    [Pg.381]    [Pg.782]    [Pg.783]    [Pg.659]    [Pg.189]    [Pg.384]    [Pg.420]   
See also in sourсe #XX -- [ Pg.62 , Pg.91 ]

See also in sourсe #XX -- [ Pg.24 ]

See also in sourсe #XX -- [ Pg.5 , Pg.172 ]

See also in sourсe #XX -- [ Pg.13 ]

See also in sourсe #XX -- [ Pg.570 ]

See also in sourсe #XX -- [ Pg.477 ]




SEARCH



© 2024 chempedia.info