Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zirconium ionization

Several compounds such as BaZrS [12026-44-7], SrZrS [12143-75-8], and CaZrS [59087-48-8], have been made by reacting carbon disulfide with the corresponding zirconate at high temperature (141), whereas PbZrS [12510-11-1] was produced from the elements zirconium and sulfur plus lead sulfide sealed in a platinum capsule which was then pressurized and heated (142). Lithium zirconium disulfide [55964-34-6], LiZrS2, was also synthesized. Zirconium disulfide forms organometaUic intercalations with a series of low ionization (<6.2 eV)-sandwich compounds with parallel rings (143). [Pg.434]

Kroll process, 13 84-85 15 337 17 140 in titanium manufacture, 24 851-853 Kroll zirconium reduction process, 26 631 KRW gasifier, 6 797-798, 828 Krypton (Kr), 17 344 commercial, 17 368t complex salts of, 17 333-334 doubly ionized, 14 685 hydroquinone clathrate of, 14 183 in light sources, 17 371-372 from nuclear power plants, 17 362 physical properties of, 17 350 Krypton-85, 17 375, 376 Krypton compounds, 17 333-334 Krypton derivatives, 17 334 Krypton difluoride, 17 333, 336 uses for, 17 336... [Pg.506]

Introduction.—The fifth ionization potential of zirconium has been re-evaluated as ca. 80.36 eV from spectroscopic studies. 3o. 131 describing the analytical... [Pg.21]

Resonance-ionization mass-spectrometry is still in the development stage in terms of its application to cosmochemistry. The Charisma instrument, which is operated by Argonne National Laboratories, uses multiple lasers to resonantly ionize only the elements of interest, which are then analyzed with a time-of-flight mass spectrometer. The Charisma instrument has made isotopic measurements of molybdenum, zirconium, strontium, ruthenium, barium and other elements in presolar grains. These measurements are made possible by the high ionization efficiency of the RIMS technique and its ability to completely eliminate isobaric interferences. Work is now underway to build a RIMS instrument that can be operated by an individual investigator in a university laboratory. If this succeeds, RIMS will play an increasing role in analysis of extraterrestrial materials. [Pg.534]

Figure 9.61 ToF mass spectrum of metal-carbon cluster ions (TiC2+ and ZrnCm+ cluster ions) using a titanium-zirconium (50 50) mixed alloy rod produced in a laser vaporization source (Nd YAG, = 532 nmj and ionization by a XeCI excimer laser (308 ). ( . M. Davis, S. J. Peppernick and A. W Castleman, J. Chem. Phys., 124, 164304(2006). Reproduced by permission of American Institute of Physics.)... Figure 9.61 ToF mass spectrum of metal-carbon cluster ions (TiC2+ and ZrnCm+ cluster ions) using a titanium-zirconium (50 50) mixed alloy rod produced in a laser vaporization source (Nd YAG, = 532 nmj and ionization by a XeCI excimer laser (308 ). ( . M. Davis, S. J. Peppernick and A. W Castleman, J. Chem. Phys., 124, 164304(2006). Reproduced by permission of American Institute of Physics.)...
Lamouroux, C., Moulin, C., Tabet, J.C., Jankowki, C.K. 2000. Characterization of zirconium complexes of interest in spent nuclear fuel reprocessing by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 14 1869-1877. [Pg.498]

The main advantage of the zirconium family of columns is their stability from pH 1 to 10 and at temperatures from ambient to 200°C. Their separating character also differs from silica-based columns due to the lack of ionizable surface molecules. Silica above pH 3.0 loses a proton to form anionic silicate moieties, giving the bonded-phase silica column some anionic as well as nonpolar organic column characteristics (Fig. 6.8a). [Pg.86]

Many attempts have been made to quantify SIMS data by using theoretical models of the ionization process. One of the early ones was the local thermal equilibrium model of Andersen and Hinthome [36-38] mentioned in the Introduction. The hypothesis for this model states that the majority of sputtered ions, atoms, molecules, and electrons are in thermal equilibrium with each other and that these equilibrium concentrations can be calculated by using the proper Saha equations. Andersen and Hinthome developed a computer model, C ARISMA, to quantify SIMS data, using these assumptions and the Saha-Eggert ionization equation [39-41]. They reported results within 10% error for most elements with the use of oxygen bombardment on mineralogical samples. Some elements such as zirconium, niobium, and molybdenum, however, were underestimated by factors of 2 to 6. With two internal standards, CARISMA calculated a plasma temperature and electron density to be used in the ionization equation. For similar matrices, temperature and pressure could be entered and the ion intensities quantified without standards. Subsequent research has shown that the temperature and electron densities derived by this method were not realistic and the establishment of a true thermal equilibrium is unlikely under SIMS ion bombardment. With too many failures in other matrices, the method has fallen into disuse. [Pg.189]

An alternative method for producing mass spectra of solid samples which shows promise for the analysis of zeolites and related materials is the plasma desorption technique recently reported by Schwiekert et al. [71,72]. This technique uses a less energetic means of ionizing the solid than laser ablation, and initial indications are that negative ion spectra from materials like zirconium phosphate may reflect the connectivity as well as the stoichiometry of the solid analyzed to a greater degree than laser ablation. [Pg.136]

At higher temperatures (i.e., 1,000°C) and excess partial pressure of oxygen (i.e., 10 6to latm.), monoclinic zirconia contains completely ionized zirconium vacancies [26], At 1,000°C, zirconia is stoichiometric at a pressure of 10 16 atm. At this point, the concentration of oxygen vacancies is equal to twice the concentration of zirconium vacancies. As the partial pressure of oxygen increases, the stoichiometry changes such that for ZrO,+, with the S value defined by ... [Pg.180]

Before the 1970s, Ziegler-Natta catalysts for a-olefin production were normally prepared from certain compounds of transition metals of Groups IV-VI of the periodic table (Ti, V, Cr, etc.) in combination with an organoraetallic alkyl or aryl (Table I). Practically all subhalides of transition metals have been claimed as catalysts in stereoregular polymerization. Only those elements with a first work function <4 eV and a first ionization potential <7 V yield sufficiently active halides, that is, titanium, vanadium, chromium, and zirconium (7, Only titanium chlorides have gained widespread acceptance in crystalline polyolefin production. [Pg.72]


See other pages where Zirconium ionization is mentioned: [Pg.535]    [Pg.86]    [Pg.104]    [Pg.240]    [Pg.130]    [Pg.362]    [Pg.34]    [Pg.448]    [Pg.387]    [Pg.964]    [Pg.751]    [Pg.808]    [Pg.510]    [Pg.87]    [Pg.89]    [Pg.96]    [Pg.9]    [Pg.203]    [Pg.238]    [Pg.133]    [Pg.345]    [Pg.332]    [Pg.34]    [Pg.449]    [Pg.133]    [Pg.88]    [Pg.964]    [Pg.23]    [Pg.952]    [Pg.136]    [Pg.362]    [Pg.216]    [Pg.247]    [Pg.159]    [Pg.77]    [Pg.857]   
See also in sourсe #XX -- [ Pg.9 , Pg.304 ]




SEARCH



Zirconium ionization energy

© 2024 chempedia.info