Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zirconium complexes phthalocyanines

Bis(phthalocyanines) are also accessible by the reaction of isoindolinediimine and suitable metal compounds. For example, zirconium(IV) chloride when treated with isoindolinediimine in refluxing quinoline under a nitrogen atmosphere for 2 hours gives a zirconium(IV) bis(phthalocyanine) complex. [Pg.775]

Equations (II) to (IX) illustrate basic methods of preparation, but many variations are used, particularly in industry, to obtain an economic yield. Phthalic acid, phthalamide, phthalimide, and phthalic anhydride, together with urea, are often used instead of phthalonitrile, and catalysts such as ammonium molybdate or zirconium tetrachloride may be employed (249, 251, 269). The reaction between phthalonitrile and metals (finely divided or acid-etched) is usually very vigorous at 250°-300°C, sufficient heat being generated to maintain the reaction temperature. This is an illustration of the ease with which the phthalocyanine skeleton is formed. Even more surprising are the observations that palladium black (118) and gold (189) will dissolve in molten phthalonitrile. Reaction (III) between phthalonitrile and a finely divided metal, metal hydride, oxide, or chloride is perhaps the most generally employed. For the unstable phthalocyanine complexes such as that of silver (11), the double decomposition reaction... [Pg.31]

Cartoni et al. [88] studied perspective of the use as stationary phases of n-nonyl- -diketonates of metals such as beryllium (m.p. 53°C), aluminium (m.p. 40°C), nickel (m.p. 48°C) and zinc (liquid at room temperature). These stationary phases show selective retention of alcohols. The retention increases from tertiary to primary alcohols. Alcohols are retained strongly on the beryllium and zinc chelates, but the greatest retention occurs on the nickel chelate. The high retention is due to the fact that the alcohols produce complexes with jS-diketonates of the above metals. Similar results were obtained with the use of di-2-ethylhexyl phosphates with zirconium, cobalt and thorium as stationary phases [89]. 6i et al. [153] used optically active copper(II) complexes as stationary phases for the separation of a-hydroxycarboxylic acid ester enantiomers. Schurig and Weber [158] used manganese(ll)—bis (3-heptafiuorobutyryl-li -camphorate) as a selective stationary phase for the resolution of racemic cycUc ethers by complexation GC. Picker and Sievers [157] proposed lanthanide metal chelates as selective complexing sorbents for GC. Suspensions of complexes in the liquid phase can also be used as stationary phases. Pecsok and Vary [90], for example, showed that suspensions of metal phthalocyanines (e.g., of iron) in a silicone fluid are able to react with volatile ligands. They were used for the separation of hexane-cyclohexane-pentanone and pentane-water-methanol mixtures. [Pg.197]


See other pages where Zirconium complexes phthalocyanines is mentioned: [Pg.136]    [Pg.252]    [Pg.588]    [Pg.1103]    [Pg.106]    [Pg.1749]    [Pg.647]   
See also in sourсe #XX -- [ Pg.2 , Pg.868 ]




SEARCH



Phthalocyanine complexe

Phthalocyanine complexes

Phthalocyanines complexes

Zirconium complexes

Zirconium phthalocyanine

© 2024 chempedia.info