Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zirconia isoelectric point

The support, zirconia (ISA), was supplied by the Norton Company. The oxide was grounded and sieved to a particle size ranged from 0.16 to 0.25 mm, and calcined at 773 K. Its surface properties, 63.3 m g of specific surface and average pore diameter of 8.60 nm, were determined from the nitrogen adsorption isotherms. The catalysts were prepared by adsorption from solution and/or impregnation of precursor(s), ruthenium nitrosyl nitrate (Alfa) and hexachloroplatinic acid (Aldrich), onto the support. Being zirconia isoelectric point 6.5 (determined by electrophoresis [17] using a Malvern Instrument Zetasizer 4) the precursors solution pH value was kept sufficiently low to enable the desired adsorption of complex metal anions. [Pg.556]

Abrasive particles are a key component in CMP slurry. The most commonly used abrasive particles include silica, alumina, ceria, zirconia, titania, and diamond. Table 21.1 listed a set of information on each type of abrasive particles such as density, microhardness, and isoelectric points (lEP). It is important to point out that the specific values for these properties depend highly on the preparation techniques and the specific states of the samples. The values listed in the table represent an average of the most commonly reported data. For example, the isoelectric point for silica is a function of the number of hydroxyl groups, type and level of adsorbed species, metal impurity in the solid matrix, and the treatment history of the materials [1]. There are three major types of silica according to their preparation methods fumed, colloidal, and precipitated. The common sources for obtaining these abrasive particles are listed in Table 21.2. As examples, some of the more specific information on... [Pg.687]

Schultz, M., Grimm, S., and Burckhardt. W., The isoelectric point of pure and doped zirconia in relation to the preparation route. Solid State Ionics, 63-65, 18, 1993. [Pg.1010]

Inorganic membranes, usually appUed when high temperatures or chemically active mixtures are involved, are made of ceramics [171,172], zirconia-coated graphite [173],silica-zirconia [174],zeolites [168], or porous glass [175] among others [176]. Ceramic membranes are steam sterilizable and offer a higher mechanical stability [134], thus they may be preferably used in aseptic fermentations, since some hollow fibers are only chemically sterilizable and not very suitable for reuse. Composite materials, in which glass fiber filters are used as support for the polymerization of acrylamide monomers, were developed for the hydrolysis of penicillin G in an electrically immobilized enzyme reactor. By careful adjustment of the isoelectric point of amphoteric membranes, the product of interest (6-aminopenicillanic acid) was retained in an adequate chamber, adjacent to the reaction chamber, while the main contaminant (phenyl acetic acid), was collected in a third chamber [120]. [Pg.131]

Ceramic membranes show an amphoteric character. Zirconia (ZiOz) has an isoelectric point (EP) at a pH = 6.5.Ulirafiltration membranes of ZjOj show a certain retention to sulphate ions. [Pg.402]

A wide variety of materials have been implemented as abrasive particles in CMP processes. They include alumina, silica, ceria, zirconia, titania, and diamond. The effectiveness and suitability of these particles in CMP with particular applications are greatly influenced by their bulk properties (density, hardness, particle size, crystallinity etc.) and the surface properties (surface area, isoelectric electric point (lEP), OH content, etc.). This section will focus on the evaluation of alumina, silica, diamond, and ceria as the major abrasives used for the CMP of metals. [Pg.225]


See other pages where Zirconia isoelectric point is mentioned: [Pg.35]    [Pg.131]    [Pg.142]    [Pg.346]    [Pg.348]    [Pg.919]    [Pg.224]    [Pg.741]    [Pg.1009]    [Pg.314]    [Pg.847]    [Pg.1357]    [Pg.8]    [Pg.192]    [Pg.275]    [Pg.2714]    [Pg.847]    [Pg.450]    [Pg.89]   
See also in sourсe #XX -- [ Pg.399 ]




SEARCH



Isoelectric

Isoelectric point

© 2024 chempedia.info