Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc-copper couple reduction

Finely divided Ti(0) metal particles produced by reduction of TiClg with potassium or lithium metal or with a zinc-copper couple " reductively couple aldehydes and ketones at elevated temperature to produce alkenes. [Pg.415]

With special techniques for the activation of the metal—e.g. for removal of the oxide layer, and the preparation of finely dispersed metal—the scope of the Refor-matsky reaction has been broadened, and yields have been markedly improved." The attempted activation of zinc by treatment with iodine or dibromomethane, or washing with dilute hydrochloric acid prior to use, often is only moderately successful. Much more effective is the use of special alloys—e.g. zinc-copper couple, or the reduction of zinc halides using potassium (the so-called Rieke procedure ) or potassium graphite. The application of ultrasound has also been reported. ... [Pg.238]

An approach to the preparation of asymmetrically 1,2-disubstituted 1,2-diamines has been reported the zinc-copper-promoted reductive coupling of two different N-(4-substituted)phenyl aromatic imines, one bearing a 4-methoxy and the other a 4-chloro substituent, in the presence of either boron trifluoride or methyltrichlorosilane, gave a mixture of the three possible 1,2-diamines, where the mixed one predominated [31 ]. Low degrees of asymmetric induction were observed using 1-phenylethylamine, phenylglycinol and its 0-methyl ether, and several a-amino acid esters as the chiral auxiharies meanwhile the homocoupling process was not avoided (M.Shimizu, personal communication). [Pg.13]

Zinc/copper couple (Zn/Cu), produced by the treatment of zinc with HC1, followed by the addition of copper(n) sulfate, has been known since the seminal work of Simmons and Smith.67 A less reactive form of activated zinc, but one that is sufficiently active for most applications, is produced by the treatment of the metal with 1,2-dibro-moethane, followed by Me3SiCl.68 The most reactive form of activated zinc, the so-called Rieke zinc (Zn ), is finely divided metallic zinc produced by the homogenous reduction of zinc halides in THF.69... [Pg.329]

Buynak et al. reported the synthesis of representative 7-vinylidenecephalosporine derivatives bearing an axial allene chirality (Scheme 4.5) [9]. A chiral allene 24 was prepared stereoselectively utilizing the reaction of an organocopper reagent with propargyl triflate 23, obtained by a diastereoselective ethynylation of the ketone 22 with ethynylmagnesium bromide. Terminally unsubstituted allene 26 was synthesized via bromination of the triflate 23 followed by reduction of the bromide 25 with a zinc-copper couple. [Pg.144]

Ethynylallenes [35], the didehydro analogs of vinylallenes, have also been known for some time, the parent system 7 having been obtained in 1960 by reduction of 3-chloro-l,4-pentadiyne (101) with zinc-copper couple in butanol [36] and the 5-methyl derivative 103 by base-catalyzed isomerization of 1,4-hexadiyne (102) with sodium ethoxide in ethanol (Scheme 5.13) [9]. [Pg.197]

The use of the zinc-copper couple to effect the reduction of the methanesulfonate 168 with rearrangement furnished 169 (Scheme 20.34) [10]. Treatment of 168 with methylmagnesium bromide in the presence of copper(I) cyanide to induce an SN2 -type reaction produced the methylated adduct 170. The half-life of the Myers-Saito cyclization of 169 is 66 h at 37 °C, whereas that of 170 is 100 min. The faster rate of cyclization for 170 has been attributed to a steric effect favoring the requisite s-cis or twisted s-cis conformation. [Pg.1113]

Let us continue with the example of copper ions in contact with copper metal and zinc ions in contact with zinc metal. This combination is usually referred to as the Darnell cell or zinc/copper couple(Fig. 6.5a). For this electrochemical cell the reduction and oxidation processes responsible for the overall reaction are separated in space one half reaction taking place in one electrode compartment and the other takes place in the other compartment. [Pg.228]

Divalent chromium salts show very strong reducing properties. They are prepared by reduction of chromium(III) compounds with zinc [187] or a zinc-copper couple and form dark blue solutions extremely sensitive to air. Most frequently used salts are chromous chloride [7SS], chromous sulfate [189], and less often chromous acetate. Reductions of organic compounds are carried out in homogeneous solutions in aqueous methanol [190], acetone [191], acetic acid [192], dimethylformamide [193] or tetrahydrofuran [194] (Procedure 37, p. 214). [Pg.30]

Solutions of low-valence titanium chloride (titanium dichloride) are prepared in situ by reduction of solutions of titanium trichloride in tetrahydrofuran or 1,2-dimethoxyethane with lithium aluminum hydride [204, 205], with lithium or potassium [206], with magnesium [207, 208] or with a zinc-copper couple [209,210]. Such solutions effect hydrogenolysis of halogens [208], deoxygenation of epoxides [204] and reduction of aldehydes and ketones to alkenes [205,... [Pg.30]

An interesting reaction takes place when diketones with the keto groups in positions 1,4 or more remote are refluxed in dimethoxyethane with titanium dichloride prepared by reduction of titanium trichloride with a zinc-copper couple. By deoxygenation and intramolecular coupling, cycloalkenes with up to 22 members in the ring are obtained in yields of 50-95%. For example, 1-methyl-2-phenylcyclopentene was prepared in 70% yield from 1-phenyl-1,5-hexanedione, and 1,2-dimethylcyclohexadecene in 90% yield from 2,17-octa-decanedione [206, 210]. [Pg.128]

A modified procedure suitable for intramolecular reductive coupling is achieved using low-valence titanium prepared by reduction of titanium trichloride with a zinc-copper couple followed by the extremely slow addition of ketone to the refluxing reaction mixture (0.0003 mol over a 9-hour period by use of a motor-driven syringe pump) [S60. ... [Pg.215]

Zinc-copper couple, 20, 1 58, 1, 2 Zinin reduction of nitroarenes, 20, 4... [Pg.595]

Under conventional dechlorination conditions (20 equiv of zinc dust, acetic acid, 25°C or 50°C) the reduction of 4,4-dichlorocyclobutenones affords complex mixtures of products which include the desired cyclobutenones as well as significant amounts of partially reduced byproducts. He have found that the desired transformation can be accomplished cleanly provided that the reduction is carried out at room temperature in alcoholic solvents (preferably ethanol) in the presence of 5 equiv each of acetic acid and a tertiary amine (preferably tetramethylethylenediamine). Zinc dust has proven to be somewhat superior to zinc-copper couple for this reduction. The desired cyclobutenones are obtained in somewhat higher yield using this procedure as compared to the related conditions reported by Dreiding [Zn(Cu), 4 1 AcOH-pyridine, 50-60 C] for the same transformation. ... [Pg.147]

Acyloin-type reactions of esters provide the simplest route to 1-siloxy-l-alkoxycyclopropane [21,22] Eq. (6). The reaction of commercial 3-halopropionate with sodium (or lithium) in refluxing ether in the presence of Me3SiCl can easily be carried out on a one mole scale [21]. Cyclization of optically pure methyl 3-bromo-2-methylpropionate [23], available in both R and S form, gives a cyclopropane, which is enantiomerically pure at C-2, yet is a 1 1 diastereo-meric mixture with respect to its relative configuration at C-l Eq. (7). Reductive silylation of allyl 3-iodopropionate with zinc/copper couple provides a milder alternative to the alkali metal reduction [24] Eq. (8). [Pg.6]

A very practical route to zinc homoenolate involves reduction of 3-iodoesters with zinc/copper couple in the presence of a polar solvent, e.g. DMF, DMA [49] Eq. (51). The nature of the species obtained in this approach is not well-defined, but appears to be essentially the same as the one obtained along the siloxycyclo-propane route. Acylation, arylation, and vinylation reactions have been reported. [Pg.25]

Norcarane has been prepared by the reduction of 7,7-dichlo-ronorcarane with sodium and alcohol,6 and by the light-catalyzed reaction of diazomethane with cyclohexene.6 The reaction of cyclohexene with methylene iodide and zinc-copper couple represents the most convenient preparation of norcarane which is of high purity. [Pg.102]

Reduction of alkynes to alkenes. The zinc-copper couple of Smith and Simmons (1, 1292) reduces internal alkynes to (Z>alkcncs exclusively in yields generally >95%.2 Terminal alkynes are reduced to 1-alkenes.3 Example ... [Pg.459]

Reduction of 5-chloroisatin with a zinc-copper couple led to 5-chlorooxindole.137a A sodium-butanol reduction of 4,6-dimethoxyisatin led to the corresponding indole.94... [Pg.21]

Lithium butyldimethylzincate, 221 Lithium sec-butyldimethylzincate, 221 Organolithium reagents, 94 Organotitanium reagents, 213 Palladium(II) chloride, 234 Titanium(III) chloride-Diisobutylalu-minum hydride, 303 Tributyltin chloride, 315 Tributyl(trimethylsilyl)tin, 212 3-Trimethylsilyl-l, 2-butadiene, 305 Zinc-copper couple, 348 Intramolecular conjugate additions Alkylaluminum halides, 5 Potassium t-butoxide, 252 Tetrabutylammonium fluoride, 11 Titanium(IV) chloride, 304 Zirconium(IV) propoxide, 352 Miscellaneous reactions 2-(Phenylseleno)acrylonitrile, 244 9-(Phenylseleno)-9-borabicyclo[3.3.1]-nonane, 245 Quina alkaloids, 264 Tributyltin hydride, 316 Conjugate reduction (see Reduction reactions)... [Pg.361]


See other pages where Zinc-copper couple reduction is mentioned: [Pg.156]    [Pg.335]    [Pg.92]    [Pg.341]    [Pg.197]    [Pg.152]    [Pg.125]    [Pg.32]    [Pg.83]    [Pg.201]    [Pg.171]    [Pg.197]    [Pg.80]    [Pg.238]    [Pg.643]    [Pg.651]    [Pg.392]    [Pg.38]    [Pg.440]    [Pg.335]    [Pg.74]   


SEARCH



Copper couples

Copper reduction

Copper-zinc

Reduction Reductive coupling

Reduction couple

Zinc Couples

Zinc copper couple

Zinc reduction

© 2024 chempedia.info