Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeroth law of thermodynamics state

I mentioned temperature at the end of the last chapter. The concept of temperature has a great deal to do with thermodynamics, and at first sight very little to do with microscopic systems such as atoms or molecules. The Zeroth Law of Thermodynamics states that Tf system A is in thermal equilibrium with system B, and system B is in thermal equilibrium with system C, then system A is also in thermal equilibrium with system C . This statement indicates the existence of a property that is common to systems in thermal equilibrium, irrespective of their nature or composition. The property is referred to as the temperature of the system. [Pg.58]

The zeroth law of thermodynamics states that there exists an additional intensive variable, temperature T = T p,V, N ), which has the same value for all systems in equilibrium with each other. [Pg.522]

The zeroth law of thermodynamics states "Two systems in thermal equilibrium with a third system are in thermal equilibrium with each other." The zeroth law declares that two bodies in thermal equilibrium share a thermodynamic property, and that this thermodynamic property must be a state function. The thermodynamic property described by the zeroth law is temperature. [Pg.54]

The zeroth law of thermodynamics states that when a system ( ) is in thermal equilibrium with a system ("), and the system (") is in thermal equilibrium with a system (" ), then the system ( ) is also in thermal equilibrium with the system (" ) Therefore, the equilibrium is transitive. Frequently it is added that the zeroth law is the base for building a thermometer. [Pg.111]

We state the total system is in equilibrium with respect to the energy form 1 dXi. We have omitted now the primes. If i = T and consequently Xi = S, we are talking about thermal energy. The zeroth law of thermodynamics states that in thermal equilibrium the temperatures of coupled systems are the same. As pointed out in detail, the zeroth law of thermodynamics is a special case of equilibrium, namely thermal equilibrium. [Pg.112]

The zeroth law of thermodynamics states that any two systems, call them A and B, that are each in thermal equilibrium with a third system, call it C, must be in thermal equilibrium with each other. Thermal equilibrium implies that the systems must have the same temperature, and therefore systems A and B must have the same temperature. This might seem totally obvious, but it is what puts our use of thermometers to compare the temperatures of different objects on a sound footing. If object C is our thermometer, we can use it to compare the temperatures of other objects. [Pg.137]

Physically, how could we obtain such an ensemble First, consider the laboratory temperature bath , sketched in Fig. 4.2. Experimentally, the system of interest is placed in the temperature bath where it can exchange energy with the bath. Now, if the bath is infinite in extent (infinite reservoir), the bath temperature remains constant. The so-called zeroth law of thermodynamics states that two systems in thermal contact with each other (i.e., energy flows freely between the two systems) will have the same temperature at equilibrium (i.e., at long contact times) thus, T = Tg if the contact time is sufficiently large. After a sufficiently long time, when the bath temperature and system temperature have equilibrated, the thermodynamic properties... [Pg.83]

The zeroth law of thermodynamics states that if systems A and B are separately in thermal equilibrium with system C, then they are in thermal... [Pg.10]

The zeroth law of thermodynamics states a fact that many had tacitly accepted during the development of thermodynamics, and it gradually became apparent that it required a formal statement. It is stated If two objects, A and B, are at thermal equilibrium with each other and if B is at thermal equilibrium with a third object, C then A is also at thermal equilibrium with C. This law is considered to be basie to the other laws of thermodynamics, so it is called the zeroth law of thermodynamics, although it was... [Pg.110]

The Zeroth Law of Thermodynamics An extension of the principle of thermal equilibrium is known as the zeroth law of thermodynamics, which states that two systems in thermal equilibrium with a third system are in equilibrium with each other. In other words, if 7), T2, and 77, are the temperatures of three systems, with 7j - T2 and T2 = T2, then 7j = 7Y This statement, which seems almost trivial, serves as the basis of all temperature measurement. Thermometers, which are used to measure temperature, measure their own temperature. We are justified in saying that the temperature T3 of a thermometer is the same as the temperature 7j of a system if the thermometer and system are in thermal equilibrium. [Pg.11]

When a hot body and a cold body are brought into physical contact, they lend to achieve the same warmth after a long lime. These two bodies are then said to be at thermal equilibrium with each other. The zeroth law of thermodynamics (R.H. Fowler) states that two bodies individually at equilibrium with a third are at equilibrium with each other. This led lo the comparison of the states of thermal equilibrium of two bodies in lei ms ol a third body called a thermometer. The temperature scale is a measure of state or thermal equilibrium, and tw-o systems at thermal equilibrium must have the same temperature. [Pg.580]

The fundamental meaning of temperature may be described in terms of the zeroth law of thermodynamics. This states that when two bodies are each in thermal equilibrium with a third body they are then in thermal equilibrium with each other, i.e. [Pg.466]

The zeroth law of thermodynamics is in essence the basis of all thermometric measurements. It states that, if a body A has the same temperature as the bodies B and C, then the temperature of B and C must be the same. One way of doing this is to calibrate a given thermometer against a standard thermometer. The given thermometer may then be used to determine the temperature of some system of interest. The conclusion is made that the temperature of the system of interest is the same as that of any other system with the same reading as the standard thermometer. Since a thermometer in effect measures only its own temperature, great care must be used in assuring thermal equilibrium between the thermometer and the system to be measured. [Pg.7]

Heat capacities can be defined for processes that occur under conditions other than constant volume or constant temperature. For example, we could define a heat capacity at constant length of a sample. However, regardless of the nature of the process, the heat capacity will always be positive. This is ensured by the zeroth law of thermodynamics, which requires that as positive heat is transferred from a heat reservoir to a colder body, the temperature of the body will rise toward that of the reservoir in approaching the state of thermal equilibrium, regardless of the constraints of the heat-transfer process. [Pg.71]

This leads us to the Zeroth Law of Thermodynamics (which is really a statement of experience) which states that if we have an adiabatically insulated system (q = 0) in which a body A is in thermal equilibrium with a body B and B is, in turn, in thermal equilibrium with a third body C then A will be in equilibrium with C even though it may not be in direct contact. [Pg.25]

The zeroth law of thermodynamics involves some simple definition of thermodynamic equilibrium. Thermodynamic equilibrium leads to the large-scale definition of temperature, as opposed to the small-scale definition related to the kinetic energy of the molecules. The first law of thermodynamics relates the various forms of kinetic and potential energy in a system to the work which a system can perform and to the transfer of heat. This law is sometimes taken as the definition of internal energy, and introduces an additional state variable, enthalpy. [Pg.2]

Two systems in thermal contact eventually arrive at a state of thermal equilibrium. Temperature, as a universal function of the state and the internal energy, uniquely defines the thermal equilibrium. If system 1 is in equilibrium with system 2, and if system 2 is in equilibrium with system 3, then system 1 is in equilibrium with system 3. This is called the zeroth law of thermodynamics and implies the construction of a universal temperature scale (stated first by Joseph Black in the eighteenth century, and named much later by Guggenheim). If a system is in thermal equilibrium, it is assumed that the energy is distributed uniquely over the volume. Once the energy of the system increases, the temperature of the system also increases (dU/dT> 0). [Pg.11]

A fundamental attribute of temperature is that for any body in a state of equilibrium the temperature may be expressed by a number on a temperature scale, defined without particular reference to that body. The applicability of a universal temperature scale to all physical bodies at equilibrium is a consequence of an empirical law (sometimes called the zeroth law of thermodynamics ), which states that if a body is in thermal equilibrium separately with each of two other bodies these two will be also in thermal equilibrium with each other. [Pg.91]

The formalism of the statistical mechanics agrees with the requirements of the equilibrium thermodynamics if the thermodynamic potential, which contains all information about the physical system, in the thermodynamic limit is a homogeneous function of the first order with respect to the extensive variables of state of the system [14, 6-7]. It was proved that for the Tsallis and Boltzmann-Gibbs statistics [6, 7], the Renyi statistics [10], and the incomplete nonextensive statistics [12], this property of thermodynamic potential provides the zeroth law of thermodynamics, the principle of additivity, the Euler theorem, and the Gibbs-Duhem relation if the entropic index z is an extensive variable of state. The scaling properties of the entropic index z and its relation to the thermodynamic limit for the Tsallis statistics were first discussed in the papers [16,17],... [Pg.304]

The law of thermal equilibrium, the zeroth law of thermodynamics, is another important principle. The importance of this law to the temperature concept was not fully realized until after the other parts of thermodynamics had reached a rather advanced state of development hence the unusual name, zeroth law. [Pg.96]

Thermometry is based on the principle that the temperatures of different bodies may be compared with a thermometer. For example, if you find by separate measurements with your thermometer that two bodies give the same reading, you know that within experimental error both have the same temperature. The significance of two bodies having the same temperature (on any scale) is that if they are placed in thermal contact with one another, they will prove to be in thermal equilibrium with one another as evidenced by the absence of any changes in their properties. This principle is sometimes called the zeroth law of thermodynamics, and was first stated as follows by J. C. Maxwell (1872) Bodies whose temperatures are equal to that of the same body have themselves equal temperatures. ... [Pg.40]

Zeroth Law of Thermodynamics. For systems in equilibrium, there is an intrinsic property internal energy. Any two bodies or systems in equilibrium with a third body are in equilibrium with each other. A function of the state of a substance that takes on the same value for all substances in thermal equilibrium, which is the temperature. For closed systems, changes in the internal energy are ... [Pg.563]

However, there is an even more fundamental idea that is usually assumed but rarely stated because it is so obvious. Occasionally, this idea is referred to as the zeroth law of thermodynamics, because even the first law depends on it. It has to do with one of the variables that was introduced in the previous section, temperature. [Pg.3]

The above derivation shows that the zeroth law of Thermodynamics, as commonly introduced in elementary treatments, which states that heat flows spontaneously from a hotter to a colder region, really should not be considered a fundamental pronouncement. [Pg.124]

This statement, though intuitively obvious, represents a fact of Nature and is referred to as the Zeroth Law of thermodynamics, introduced by Fowler and Guggenheim in 1939. Its practical value is to introduce the concept of temperature as a state property rather than a sense of hotness or coldness. ... [Pg.37]

From all possible statistical systems the equilibrium closed systems are allocated. For such systems the physical theory, referred to as equilibrium thermodynamics or simply thermodynamics, is well developed. Thermodynamics is the phenomenological doctrine of heat. Classical thermodynamics asserts that the isolated thermodynamic system cannot spontaneously change it s state . This statement is sometimes referred to as the zeroth law of thermodynamics, another assertion of which is that If two thermodynamic systems are in thermodynamic equilibrium with some third body they are in thermodynamic equilibrium with each other . [Pg.170]

Re Entry [63], Ref. [63]) In Ref. [63], Dr. Peter Atkins doesn t seem to explicitly state that negative Kelvin temperatures are hotter than ooK, not colder than OK. He admits the possibility of attaining OK via noncyclic processes, but as we showed in Sect. 3. of this chapter purely dynamic — as opposed to thermodynamic — limitations may contravene. On pp. 103-104 of Ref. [63], he correctly states that the third law of thermodynamics is "not really in the same league" as the zeroth, first, and second laws, and that "hints of the Third Law of Thermodynamics are already present in the consequences of the second law," but that the Third Law of Thermodynamics is "the final link in the confirmation that Boltzmann s and Clausius s definitions refer to the same property." But his statement that "we need to do an ever increasing, and ultimately infinite, amount of work to remove energy from a body as heat as its temperature approaches absolute zero" neglects the rapid decrease in specific heat as absolute zero is approached as discussed in Sect. 2. of this chapter. [Pg.288]

Tne zerutti law of thermodynamics just states tnanemperatuie exists, it s called the zeroth law because after the first, second, and third laws were already established It was realized that they depended upon a law that established the existence of temperature. [Pg.54]

The thermodynamic jnstification for introducing the temperature into science is the Zeroth Law, which states that if system A is in thermal eqni-librium with system B, and system B is in thermal equilibrium with system C, then A and C wonld also be in thermal eqtiilibrium with each other, if they were pnt in contact. The third law of thermodynamics is also relevant here it states that absolnte zero (T = 0) is not attainable in a finite nnm-ber of steps, see also Chemistry and Energy Energy Heat Physical Chemistry Thermodynamics. [Pg.1233]

Other laws of thermodynamics are often mentioned. The zeroth law states that, if two systems are in thermal equilibrium with a third system, they are in equilibrium with each other. The third law makes... [Pg.26]

Thermodynamics provides the framework of functions of state. All our experimental experience can be distilled into the three laws of thermodynamics (or four, if one counts the zeroth law, mentioned in the discussion of thermometry in Sect. 4.1). Not so precisely, these three laws have been characterized as follows [6] In the heat-to-work-conversion game the first law says you cannot win, the best you... [Pg.90]


See other pages where Zeroth law of thermodynamics state is mentioned: [Pg.377]    [Pg.377]    [Pg.109]    [Pg.88]    [Pg.200]    [Pg.27]    [Pg.419]    [Pg.54]    [Pg.49]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



State, thermodynamic

Thermodynamic law

Thermodynamics laws

Zeroth law of thermodynam

Zeroth law of thermodynamics

© 2024 chempedia.info