Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolites in oxidations

Despite the enormous importance of zeolites (molecular sieves) as catalysts in the petrochemical industry, few studies have been made of the use of zeolites exchanged with transition metal ions in oxidation reactions.6338- 634a-f van Sickle and Prest635 observed large increases in the rates of oxidation of butenes and cyclopentene in the liquid phase at 70°C catalyzed by cobalt-exchanged zeolites. However, the reactions were rather nonselective and led to substantial amounts of nonvolatile and sieve-bound products. Nevertheless, the use of transition metal-exchanged zeolites in oxidation reactions warrants further investigation. [Pg.381]

The major activities in the science and application of zeolite catalysts are still observed in the field of (shape selective) acid catalysis. However, additional thrust areas can be clearly identified today, viz. zeolites in oxidation or base catalysis, applications in environmental protection, catalysis by ship-in-the-bottle complexes, to enumerate just a few. Many aspects of zeolite catalysis have been covered in a number of recent review articles [e g., 1-6] including the potential catalytic applications of ultra-large pore molecular sieves [7]. Hence there is no real need, nor would it be feasible on the limited number of pages allotted to this review, to cover every aspect fi om the huge amount of work done recently in the field. Rather, the authors restricted themselves to selected topics in catalysis by zeolites which, in their own view, deserve particular attention in the years to come. [Pg.363]

Recently, some work appeared, where the energetic and geometries of defect centers in zeolites in oxidative conditions were reported [21]. In particular, we quote that the sodalite four-ring system, like the one where we found the peroxy-defects, was studied. [Pg.262]

In the last years a great interest was paid to the catalytic properties of iron-containing zeolites that show interesting activities in different industrial reactions. The Fe-BEA zeolite is reported to be a good catalyst in the vapour phase alkylation processes [1], the Fe-TON zeolite shows very high activity and selectivity in the olefin isomerization [2, 3]. Finally, new applications of zeolitic catalysts in the partial oxidation catalysis, such as the Solatia Inc. processes for benzene hydroxylation to phenol using Fe-MFI, open a novel route for the use of zeolites in oxidation processes [4, 5]. On the other hand, the catalytic properties of the metal-modified MOR type zeolite in the isomerization process are well known. [Pg.307]

In particular, emphasis will be placed on the use of chemisorption to measure the metal dispersion, metal area, or particle size of catalytically active metals supported on nonreducible oxides such as the refractory oxides, silica, alumina, silica-alumina, and zeolites. In contrast to physical adsorption, there are no complete books devoted to this aspect of catalyst characterization however, there is a chapter in Anderson that discusses the subject. [Pg.740]

One-step hydroxylation of aromatic nucleus with nitrous oxide (N2O) is among recently discovered organic reactions. A high eflSciency of FeZSM-5 zeolites in this reaction relates to a pronounced biomimetic-type activity of iron complexes stabilized in ZSM-5 matrix. N2O decomposition on these complexes produces particular atomic oj gen form (a-oxygen), whose chemistry is similar to that performed by the active oxygen of enzyme monooxygenases. Room temperature oxidation reactions of a-oxygen as well as the data on the kinetic isotope effect and Moessbauer spectroscopy show FeZSM-5 zeolite to be a successfiil biomimetic model. [Pg.493]

Zeolites. In heterogeneous catalysis porosity is nearly always of essential importance. In most cases porous materials are synthesized using the above de.scribed sol-gel techniques resulting in so-called amorphous catalysts. Porosity is introduced in the agglomeration process in which the sol is transformed into a gel. From X-ray Diffraction patterns it is clear that the material shows only weak broad lines, characteristic of non-crystalline materials. Silica and alumina are typical examples. Zeolites are an exception they are crystalline materials but nevertheless exhibit high (micro) porosity. Zeolites belong to the class of molecular sieves, which are porous solids with pores of molecular dimensions, i.e., typically the pore diameter ranges from 0.3 to 10 nm. Examples of molecular sieves are carbons, oxides and zeolites. [Pg.76]

Kustov, L.M. (1997) New trends in IR-spectroscopic characterization of acid and basic sites in zeolites and oxide catalysts, Top. Catal., 4, 131. [Pg.135]

The present model deals with a supported transition metal cation which is highly dispersed, at the molecular scale, on an oxide, or exchanged in a zeolite. In the case of zeolite-supported cations, the formation of different metal species in metal/zeolite catalysts (metal oxides, metal oxocations, besides cationic species) has been considered by different authors who have suggested these species to play key roles in SCR catalysis [14,15], This supported cation can also be considered as located at a metal oxide/support interface. [Pg.147]

The present study concerns the interaction of propene molecules with cobalt sites in CoZSM-5. The experiments of CO and NO sorption evidenced that this zeolite contained practically only Co2+ in exchange position and Co3+ in oxide form. Propene is a reactant in several reactions catalyzed by cobalt containing zeolites (like reduction of NO, amonoxidation of propene and others). [Pg.101]

Chromium zeolites are recognised to possess, at least at the laboratory scale, notable catalytic properties like in ethylene polymerization, oxidation of hydrocarbons, cracking of cumene, disproportionation of n-heptane, and thermolysis of H20 [ 1 ]. Several factors may have an effect on the catalytic activity of the chromium catalysts, such as the oxidation state, the structure (amorphous or crystalline, mono/di-chromate or polychromates, oxides, etc.) and the interaction of the chromium species with the support which depends essentially on the catalysts preparation method. They are ruled principally by several parameters such as the metal loading, the support characteristics, and the nature of the post-treatment (calcination, reduction, etc.). The nature of metal precursor is a parameter which can affect the predominance of chromium species in zeolite. In the case of solid-state exchange, the exchange process initially takes place at the solid- solid interface between the precursor salt and zeolite grains, and the success of the exchange depends on the type of interactions developed [2]. The aim of this work is to study the effect of the chromium precursor on the physicochemical properties of chromium loaded ZSM-5 catalysts and their catalytic performance in ethylene ammoxidation to acetonitrile. [Pg.345]

Catalytic oxidative dehydrogenation of propane by N20 (ODHP) over Fe-zeolite catalysts represents a potential process for simultaneous functionalization of propane and utilization of N20 waste as an environmentally harmful gas. The assumed structure of highly active Fe-species is presented by iron ions balanced by negative framework charge, mostly populated at low Fe loadings. These isolated Fe sites are able to stabilize the atomic oxygen and prevent its recombination to a molecular form, and facilitate its transfer to a paraffin molecule [1], A major drawback of iron zeolites in ODHP with N20 is their deactivation by accumulated coke, leading to a rapid decrease of the propylene yield. [Pg.373]

The increasing volume of chemical production, insufficient capacity and high price of olefins stimulate the rising trend in the innovation of current processes. High attention has been devoted to the direct ammoxidation of propane to acrylonitrile. A number of mixed oxide catalysts were investigated in propane ammoxidation [1]. However, up to now no catalytic system achieved reaction parameters suitable for commercial application. Nowadays the attention in the field of activation and conversion of paraffins is turned to catalytic systems where atomically dispersed metal ions are responsible for the activity of the catalysts. Ones of appropriate candidates are Fe-zeolites. Very recently, an activity of Fe-silicalite in the ammoxidation of propane was reported [2, 3]. This catalytic system exhibited relatively low yield (maximally 10% for propane to acrylonitrile). Despite the low performance, Fe-silicalites are one of the few zeolitic systems, which reveal some catalytic activity in propane ammoxidation, and therefore, we believe that it has a potential to be improved. Up to this day, investigation of Fe-silicalite and Fe-MFI catalysts in the propane ammoxidation were only reported in the literature. In this study, we compare the catalytic activity of Fe-silicalite and Fe-MTW zeolites in direct ammoxidation of propane to acrylonitrile. [Pg.397]

The nomenclature for the catalysts is as follows XAGaZB, where letter X refers to the treatments to which the sample was submitted, letter T referring specifically to the case where the sample was submitted to the two reduction-oxidation cycles described above letter A refers to the wt. % impregnated gallium amount letter B indicates the SAR of the zeolite. In this way, for example, the catalyst named T3GaZ38 is a ZSM-5 zeolite with SAR 38 impregnated with 3 wt. % gallium submitted to two reduction-oxidation cycles. [Pg.402]

A conveniently prepared amorphous silica-supported titanium catalyst exhibits activity similar to that of Ti-substituted zeolites in the epoxidation of terminal linear and bulky alkenes such as cyclohexene (22) <00CC855>. An unusual example of copper-catalyzed epoxidation has also been reported, in which olefins are treated with substoichiometric amounts of soluble Cu(II) compounds in methylene chloride, using MCPBA as a terminal oxidant. Yields are variable, but can be quite high. For example, cis-stilbene 24 was epoxidized in 90% yield. In this case, a mixture of cis- and /rans-epoxides was obtained, suggesting a step-wise radical mechanism <00TL1013>. [Pg.55]

An important consideration in constructing certain types of geochemical models, especially those applied to environmental problems, is to account for the sorption of aqueous species onto sediment surfaces (e.g., Zhu and Anderson, 2002). Because of their large surface areas and high reactivities (e.g., Davis and Kent, 1990), many components of a sediment - especially clay minerals, zeolites, metal oxides and oxyhydroxides, and organic matter - can sorb considerable masses. [Pg.137]

Frei, H. (1997). Highly selective photochemical and dark oxidation of hydrocarbons by 02 in zeolites. In Studies in Surface Science and Catalysis. 3rd World Congress on Oxidation Catalysis, Grasselli, R.K., Oyama, S.T., Gaffney, A.M. and Lyons, J.E. (eds), Vol. 110, pp. 1041-1050. Elsevier Science, New York... [Pg.267]

The applications of IR spectroscopy in catalysis are many. For example, IR can be used to directly characterize the catalysts themselves. This is often done in the study of zeolites, metal oxides, and heteropolyacids, among other catalysts [77,78], To exemplify this type of application, Figure 1.11 displays transmission IR spectra for a number of Co Mo O (0 < x < 1) mixed metal oxides with various compositions [79]. In this study, a clear distinction could be made between pure Mo03, with its characteristic IR peaks at 993, 863, 820, and 563 cm-1, and the Mo04 tetrahedral units in the CoMo04 solid solutions formed upon Co304 incorporation, with its new bands at 946 and 662 cm-1. These properties could be correlated with the activity of the catalysts toward carburization and hy-drodenitrogenation reactions. [Pg.13]

With XPS it is possible to obtain good analytical information on the amount of metal adsorbed and, in favourable cases, to identify the chemical form of that metal. Oxidation states are readily determined and it can be shown, for example, that adsorption of Co(II) on manganese oxides results in oxidation to Co(III) (38,39), whereas adsorption of Co(II) on zirconia and alumina leads to the formation of cobalt(II) hydroxide (40). With Y-type zeolites hexaaquacobalt(II) is adsorbed as Co(II), and cobalt(III) hexaammlne is adsorbed as Co(III). The XPS spectrum of Co(II) adsorbed on chlorite was consistent with the presence of the hexaaquacobalt(II) ion for pH 3-7 and indicated that no cobalt(II) hydroxide was present (41). With kaollnlte and llllte, Co is adsorbed as Co(II) over the pH range 3-10 (39,42), it being bound as the aqua ion below pH 6 and as the hydroxide above pH 8. Measurements involving Pb have... [Pg.348]

M. Neamtu, C. Catrinescu and A. Kettrup, Effect of dealumination of iron(III)-exchanged Y. zeolites on oxidation of Reactive Yellow 84 azo dye in the presence of hydrogen peroxide. Appl. Catal. B Environ., 51 (2004) 149-157. [Pg.568]

Chemical anchoring of catalytically active metal clusters onto a support is of practical importance to stabilize catalysts against loss of activity by Ostwald ripening, i.e. metal agglomeration. Documented examples include Pt, Pd, or Rh supported on acidic oxides, in particular zeolites in their H-form. Three types of anchors have been de-... [Pg.144]


See other pages where Zeolites in oxidations is mentioned: [Pg.222]    [Pg.222]    [Pg.222]    [Pg.222]    [Pg.1794]    [Pg.311]    [Pg.1541]    [Pg.17]    [Pg.51]    [Pg.56]    [Pg.66]    [Pg.108]    [Pg.213]    [Pg.494]    [Pg.99]    [Pg.98]    [Pg.253]    [Pg.50]    [Pg.190]    [Pg.18]    [Pg.261]    [Pg.27]    [Pg.218]    [Pg.103]    [Pg.144]    [Pg.184]    [Pg.215]    [Pg.215]    [Pg.265]   
See also in sourсe #XX -- [ Pg.229 , Pg.231 , Pg.233 ]

See also in sourсe #XX -- [ Pg.229 , Pg.231 , Pg.233 ]




SEARCH



Metal Species and Oxide Clusters Encapsulated in Zeolites

Oxidation zeolitic

Surface Probing Nitric Oxide Interactions with Metal Ions in Zeolites

Zeolites oxidants

© 2024 chempedia.info