Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolites carbenium ion

Several reaction pathways for the cracking reaction are discussed in the literature. The commonly accepted mechanisms involve carbocations as intermediates. Reactions probably occur in catalytic cracking are visualized in Figure 4.14 [17,18], In a first step, carbocations are formed by interaction with acid sites in the zeolite. Carbenium ions may form by interaction of a paraffin molecule with a Lewis acid site abstracting a hydride ion from the alkane molecule (1), while carbo-nium ions form by direct protonation of paraffin molecules on Bronsted acid sites (2). A carbonium ion then either may eliminate a H2 molecule (3) or it cracks, releases a short-chain alkane and remains as a carbenium ion (4). The carbenium ion then gets either deprotonated and released as an olefin (5,9) or it isomerizes via a hydride (6) or methyl shift (7) to form more stable isomers. A hydride transfer from a second alkane molecule may then result in a branched alkane chain (8). The... [Pg.111]

The possibility of NMR to follow the intramolecular migration of the selective label in adsorbed hydrocarbons gave the researches a chance to provide an evidence for the formation of alkyl carbenium ions as intermediates in reactions on solid acid catalysts, including zeolites. Carbenium ions in superacids exhibit a unique property to scramble the selective... [Pg.166]

Fig. 1. a) Standard protonation enthalpy in secondary carbenium ion formation on H-(US)Y-zeolites with a varying Si/Al ratio, b) Effect of the average acid strength for a series of H-(US)Y zeolites experimental (symbols) versus calculated results based on the parameter values obtained in [11] (lines) for n-nonane conversion as a function of the space time at 506 K, 0.45 MPa, Hj/HC = 13.13 (Si/Al-ratios 2.6, 18, 60)... [Pg.55]

A wide variety of NMR methods are being applied to understand solid acids including zeolites and metal halides. Proton NMR is useful for characterizing Brpnsted sites in zeolites. Many nuclei are suitable for the study of probe molecules adsorbed directly or formed in situ as either intermediates or products. Adsorbates on metal halide powders display a rich carbenium ion chemistry. The interpretation of NMR experiments on solid acids has been greatly improved by Ae integration of theoretical chemistry and experiment. [Pg.573]

Figure 3 shows 13c MAS spectra of acetone-2-13c on various materials. Two isotropic peaks at 231 and 227 ppm were observed for acetone on ZnCl2 powder, and appreciable chemical shift anisotropy was reflected in the sideband patterns at 193 K. The 231 ppm peak was in complete agreement with the shift observed for acetone diffused into ZnY zeolite. A much greater shift, 245 ppm, was observed on AICI3 powder. For comparison, acetone has chemical shifts of 205 ppm in CDCI3 solution, 244 ppm in concentrated H2SO4 and 249 ppm in superacid solutions. The resonance structures 5 for acetone on metal halide salts underscore the similarity of the acetone complex to carbenium ions. The relative contributions of the two canonical forms rationalizes the dependence of the observed isotropic 13c shift on the Lewis acidity of the metal halide. [Pg.578]

Operando DRIFTS examination of the working zeolite catalysts shows adsorbed hexane but do not support the presence of bound alkoxide/olefin/carbenium ion species. Data substantiate that alkanes may be activated without full transfer of zeolite proton to the alkane, i.e., without generation of any kind of real carbocation as transition state or surface intermediate. [Pg.124]

Song, W., Nicholas, J.B. and Haw, J.F. (2001). Acid-base chemistry of a carbenium ion in a zeolite under equilibrium conditions verification of a theoretical explanation of carbenium ion stability. J. Am. Chem. Soc. 123, 121-129... [Pg.264]

Since the discovery of alkylation, the elucidation of its mechanism has attracted great interest. The early findings are associated with Schmerling (17-19), who successfully applied a carbenium ion mechanism with a set of consecutive and simultaneous reaction steps to describe the observed reaction kinetics. Later, most of the mechanistic information about sulfuric acid-catalyzed processes was provided by Albright. Much less information is available about hydrofluoric acid as catalyst. In the following, a consolidated view of the alkylation mechanism is presented. Similarities and dissimilarities between zeolites as representatives of solid acid alkylation catalysts and HF and H2S04 as liquid catalysts are highlighted. Experimental results are compared with quantum-chemical calculations of the individual reaction steps in various media. [Pg.256]

In their experiments with perdeuterioisobutane on various zeolites, Engel-hardt and Hall (36) found the carbenium ions to be metastable reaction intermediates. The lifetime of an intermediate was concluded to depend on the acid strength. [Pg.260]

In the case of the butene isomers, the addition will lead to different isooctyl cations, depending on the isomer and the type of carbenium ion. The reactions involving s-butyl ions are likely to be negligible for liquid acid catalysts and of minor importance for zeolites. [Pg.262]

Intermolecular hydride transfer (Reaction (6)), typically from isobutane to an alkyl-carbenium ion, transforms the ions into the corresponding alkanes and regenerates the t-butyl cation to continue the chain sequence in both liquid acids and zeolites. [Pg.264]

The resultant cycloalkenyl carbenium ions, especially the cyclopentenyl cations, are very stable (103,104) and can even be observed as free cations in zeolites 105,106). These ions can oligomerize further and, within zeolites, irreversibly block the acidic hydroxyl groups. With liquid acids, the oligomers will dilute the acid and thus lower its acid strength. [Pg.274]

Only large-pore zeolites exhibit sufficient activity and selectivity for the alkylation reaction. Chu and Chester (119) found ZSM-5, a typical medium-pore zeolite, to be inactive under typical alkylation conditions. This observation was explained by diffusion limitations in the pores. Corma et al. (126) tested HZSM-5 and HMCM-22 samples at 323 K, finding that the ZSM-5 exhibited a very low activity with a rapid and complete deactivation and produced mainly dimethyl-hexanes and dimethylhexenes. The authors claimed that alkylation takes place mainly at the external surface of the zeolite, whereas dimerization, which is less sterically demanding, proceeds within the pore system. Weitkamp and Jacobs (170) found ZSM-5 and ZSM-11 to be active at temperatures above 423 K. The product distribution was very different from that of a typical alkylate it contained much more cracked products trimethylpentanes were absent and considerable amounts of monomethyl isomers, n-alkanes, and cyclic hydrocarbons were present. This behavior was explained by steric restrictions that prevented the formation of highly branched carbenium ions. Reactions with the less branched or non-branched carbenium ions require higher activation energies, so that higher temperatures are necessary. [Pg.286]

The data are summarized in Table II. They have been normalized to kx x s i for each zeolite catalyst. In general it is seen that the7transfer of an ethyl group (E,E E,X) occurs faster than that of a methyl group (X,E X,X). This is in agreement with the indicated mechanism for transalkylation (Figure 4) which involves a benzylic carbenium ion intermediate. In the case of methyl transfer, this is a primary cation,... [Pg.278]

Numerous studies suggest that alkyl-aluminumsilyl oxonium ions should be the real intermediates in hydrocarbon reactions over zeolite, whereas carbocations should be just transition states (J). Equilibrium between the alkyl-aluminumsilyl oxonium ion and the carbocation, although suggested in some cases, has never been experimentally or theoretically proven, but recent calculations indicated that the tert-butyl carbenium ion is an intermediate on some specific zeolite structures 6,7). [Pg.268]

Carbenium ions, 42 115, 143 acid catalysis, 41 336 chemical shift tensors, 42 124-125 fragments in zeolites, 42 92-93 history, 42 116 superacids, 42 117 Carbide catalysts, 34 37 Carbidic carbon, 37 138, 146-147 Carbidic intermediates, 30 189-190, 194 Fischer-Tropsch synthesis, 30 196-197, 206-212... [Pg.59]

For the sake of simplicity, carbenium ions, carbonium ions or protonated cyclopropane rings were used as reaction intermediates, omitting the anionic zeolite framework in the illustrahon of the reaction mechanisms for the reactions discussed here. Furthermore, it is conceivable that many such reachon paths involve alkoxide intermediates, instead of carbenium and carbonium ions. [Pg.447]

As an example for aromatic transformation the mechanism for meta-xylene disproportionation to toluene -i- trimethylbenzene is illustrated in Figure 13.46. In the first step the zeolite extracts a hydride from meta-xylene to form a carbenium ion at one of the methyl groups, presumably the rate-controlling step. This mechanism is likely to involve a Lewis acid site. The carbenium ion then adds to a second... [Pg.462]

Industrial metal-zeolite catalysts undergo a bifunctional, monomolecular mechanism [1-5, 7]. Carbenium ions are the critical reaction intermediates to complete chain reactions. In the zeolite channels, carbenium ions likely exist as an absorbed alkoxyl species, rather than as free-moving charged ions [8], Figure 14.2 illustrates the accepted reaction mechanism, using hexanes as an example. [Pg.480]


See other pages where Zeolites carbenium ion is mentioned: [Pg.2712]    [Pg.2789]    [Pg.575]    [Pg.280]    [Pg.291]    [Pg.39]    [Pg.17]    [Pg.259]    [Pg.261]    [Pg.265]    [Pg.282]    [Pg.288]    [Pg.298]    [Pg.49]    [Pg.117]    [Pg.112]    [Pg.139]    [Pg.239]    [Pg.403]    [Pg.423]    [Pg.427]    [Pg.427]    [Pg.436]    [Pg.454]    [Pg.457]    [Pg.463]    [Pg.481]    [Pg.482]    [Pg.514]    [Pg.551]    [Pg.552]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Carbenium

Carbenium ions

© 2024 chempedia.info