Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ylides direct formation

Olefination Reactions Involving Phosphonium Ylides. The synthetic potential of phosphonium ylides was developed initially by G. Wittig and his associates at the University of Heidelberg. The reaction of a phosphonium ylide with an aldehyde or ketone introduces a carbon-carbon double bond in place of the carbonyl bond. The mechanism originally proposed involves an addition of the nucleophilic ylide carbon to the carbonyl group to form a dipolar intermediate (a betaine), followed by elimination of a phosphine oxide. The elimination is presumed to occur after formation of a four-membered oxaphosphetane intermediate. An alternative mechanism proposes direct formation of the oxaphosphetane by a cycloaddition reaction.236 There have been several computational studies that find the oxaphosphetane structure to be an intermediate.237 Oxaphosphetane intermediates have been observed by NMR studies at low temperature.238 Betaine intermediates have been observed only under special conditions that retard the cyclization and elimination steps.239... [Pg.158]

Despite the pioneering work of Ando and Doyle, few synthetic applications of oxonium ylidic rearrangements have been reported. However, three examples of synthetic relevance appeared recently (Schemes 60 to 62). When a-allyloxyacetic esters are reacted with trimethylsilyl triflate and a base, the transposed material (252), resulting from a 3,2-sigmatropic rearrangement of the transient ylide (251), could be isolated in good yields. ° The same product ratio was also obtained upon treatment of the ketene acetal (253) with trimethylsilyl triflate. This second variant involves the direct formation of ylide (251) followed by its transformation into (252 Scheme 60). [Pg.942]

Caesar. J.C., Griffiths, D.V., Tebby, J.C., and Willetts, S.E., Direct formation of X -phospholes from hialkyl phosphites and dimethyl acetylenedicarboxylate. Atkylphosphonium ylides as reactive intermediates and stable products, J. Chem. Soc., Perkin Trans. I, 1627, 1984. [Pg.504]

In analogy to the properties of ordinary sulfonium salts, reaction of disulfonium dications with bases may lead to either a- or p-deprotonation. Deprotonation of the S-S dication formed during the Pummerer rearrangement of monosulfoxides of certain bis-sulfides 13, 59, 56 is a key step of the overall process. Furukawa and co-workers " also suggested that direct formation of disulfonium dication ylides occurred upon treatment of sulfinyli-mines of 14 and 41 with potassium tert-butoxide. Reaction of triflic anhydride with sulfoxide 100 affords sulfonium salt 102 through deprotonation of the corresponding S-S dication 101 (Scheme 39). ... [Pg.434]

X 10 sec" . The direct formation of 99 has been explained in terms of a head-to-head reaction of two molecules of the dipolar intermediate in a biradicaloid or carbenoid form. Alternatively, a head to tail dimerization of the nitrile ylide could occur to give 102, which is then transformed into 99 via a subsequent hydrogen shift. ... [Pg.70]

Syntheses of alkenes with three or four bulky substituents cannot be achieved with an ylide or by a direct coupling reaction. Sterical hindrance of substituents presumably does not allow the direct contact of polar or radical carbon synthons in the transition state. A generally applicable principle formulated by A. Eschenmoser indicates a possible solution to this problem //an intermolecular reaction is complex or slow, it is advisable to change the educt in such a way. that the critical bond formation can occur intramolecularly (A. Eschenmoser, 1970). [Pg.34]

Fluonnated ylides have also been prepared in such a way that fluonne is incorporated at the carhon P to the carbamonic carbon Vanous fluoroalkyl iodides were heated with tnphenylphosphine in the absence of solvent to form the necessary phosphonium salts Direct deprotonation with butyUithium or hthium dusopropy-lamide did not lead to yhde formation, rather, deprotonation was accomparued by loss of fluonde ion Flowever deprotonation with hydrated potassium carbonate in thoxane was successful and resulted in fluoroolefin yields of45-S0% [59] (equation 54) P-Fluorinated ylides may also be prepared by the reaction of an isopropyli-denetnphenylphosphine yhde with a perfluoroalkanoyl anhydnde The intermediate acyl phosphonium salt can undergo further reaction with methylene tnphenylphosphorane and phenyUithium to form a new yhde, which can then be used in a Wittig olefination procedure [60] (equation 55) or can react with a nucleophile [6/j such as an acetyhde to form a fluonnated enyne [62] (equation 56)... [Pg.591]

The adjacent iodine and lactone groupings in 16 constitute the structural prerequisite, or retron, for the iodolactonization transform.15 It was anticipated that the action of iodine on unsaturated carboxylic acid 17 would induce iodolactonization16 to give iodo-lactone 16. The cis C20-C21 double bond in 17 provides a convenient opportunity for molecular simplification. In the synthetic direction, a Wittig reaction17 between the nonstabilized phosphorous ylide derived from 19 and aldehyde 18 could result in the formation of cis alkene 17. Enantiomerically pure (/ )-citronellic acid (20) and (+)-/ -hydroxyisobutyric acid (11) are readily available sources of chirality that could be converted in a straightforward manner into optically active building blocks 18 and 19, respectively. [Pg.235]

The use of dirhodium(II) catalysts to generate ylides that, in turn, undergo a vast array of chemical transformations is one of the major achievements in metal carbene chemistry [1,103]. Several recent reviews have presented a wealth of information on these transformations [1, 103-106], and recent efforts have been primarily directed to establishing asymmetric induction, which arises when the chiral catalyst remains bound to the intermediate ylide during bond formation (Scheme 11). [Pg.217]

Concerning the yldiide Ph3P=CH-Li, the question as to whether it could be obtained by direct lithiation of the ylides 23 (Y=H), for a long time in debate between Schlosser and Corey, could have found an answer. Effectively NMR studies seem to show that a directed ortho-metallation occurs on an aromatic ring when 23 is reacted with t-BuLi [65], leading thus to the formation of 24 whose evolution does not afford Ph3P=CH-Li (Scheme 13). [Pg.52]

The formation of the azo-ylides (5) from the chlorohydrazones (4) as shown may have involved addition of triphenylphosphine to intermediate 1,3-dipoles or directly to the chlorohydrazones. ... [Pg.151]

The formation of the naphthalene (73) from the bis-ylide (72) and diethyl ketomalonate involves an unusual olefin synthesis on the carbonyl of an ester group. The methylene-pyrans (75) were formed when the diethyl malonates (74) were refluxed with j3-keto-ylides in xylene or decalin. Possible intermediates are the ketens (76) and the allenes (77). Addition of ylide to the allenes gives the betaines (78) which form methylene-pyrans either directly or via acetylenes as shown. [Pg.162]

Another difference between dimethylsulfonium methylide and dimethylsulfoxonium methylide concerns the stereoselectivity in formation of epoxides from cyclohexanones. Dimethylsulfonium methylide usually adds from the axial direction whereas dimethylsulfoxonium methylide favors the equatorial direction. This result may also be due to reversibility of addition in the case of the sulfoxonium methylide.92 The product from the sulfonium ylide is the result the kinetic preference for axial addition by small nucleophiles (see Part A, Section 2.4.1.2). In the case of reversible addition of the sulfoxonium ylide, product structure is determined by the rate of displacement and this may be faster for the more stable epoxide. [Pg.178]

Concerning the mechanism of O/H insertion, direct carbenoid insertion, oxonium ylide and proton transfer processes have been discussed 7). A recent contribution to this issue is furnished by the Cu(acac)2- or Rh2(OAc)4-catalyzed reaction of benz-hydryl 6-diazopenicillanate 237) with various alcohols, from which 6a-alkoxypenicil-lanates 339 and tetrahydro-l,4-thiazepines 340 resulted324. Formation of 340 is rationalized best by assuming an oxonium ylide intermediate 338 which then rearranges as shown in the formula scheme. Such an assumption is justified by the observation of thiazepine derivatives in reactions which involved deprotonation at C-6 of 6p-aminopenicillanates 325,326). It is possible that the oxonium ylide is the common intermediate for both 339 and 340. [Pg.208]

Another example has been provided by Ito et al., who described the use of methanofullerene derivatives as powerful and stable precursors for glycofullerenes.217 Their study was based on the use of [60]fullerenoacetyl chloride (227), obtained from the ferf-butyl [60]fullerenoacetate derivative 226, which had been prepared in 56% yield by treatment of corresponding stabilized sulfonium ylides 225 with C6o-218 Subsequent transformation with p-TsOH in toluene gave [60]full-erenoacetic acid, which was directly converted into the corresponding acyl chloride 227 by using thionyl chloride. Standard ester formation with methyl 2,3,4-tetra-O-benzyI -/<-d-gl ucopyranoside (228) and 4-(dimethylamino)pyridine (DMAP) afforded the desired hybrid derivative 229 in 66% yield. [Pg.244]

As mentioned above (see Scheme 1), three main directions of the decomposition of intermediates that formed are possible when phosphorus and arsenic ylides react with compounds bearing C=X bonds 5,6,19,63,64,88 (i) elimination of R3E15=X to form olefins (Wittig type reaction) (ii) retro-Wittig type decomposition and (iii) elimination of R3E15 and formation of three-membered cycles (Corey-Chaykovsky type reaction). According to the data of Erker and coworkers,12,13,51 under kinetic control, the reaction of phosphorus ylides with thiocarbonyl compounds also affords phosphines and thiiranes, whose further transformations lead to olefins and R3PS under thermodynamic control. [Pg.57]

Ifcobs is directly proportional to pyridine concentration. Therefore a plot of kobs vs. [pyridine] is linear, with a slope (k ) equal to the second order rate constant for ylide formation, and an intercept (k0) equal to the sum of all processes that destroy the carbene in the absence of pyridine (e.g.) intramolecular reactions, carbene dimerization, reactions with solvent, and, in the case of diazirine or diazo carbene precursors, azine formation. [Pg.54]

Although we are not specifically concerned here with kpp and the kinedcs of carbene-pyridine ylide formation, we note that the magnitude of is directly related to the structure and reactivity of the carbene. fcpyr ranges from 105 M s-1 for ambiphilic alkoxycarbenes to 109-10I° M-1 s 1 for electrophilic halocarbenes or alkylcarbenes. Very nucleophilic carbenes (MeOCOMe) do not react with pyridine.13... [Pg.55]

In pentane, the distribution of 1,3-insertion product 25 to 1,2-Me shift product 26 is 91 9. Upon addition of 2-methyl-1-butene, the yield of 25 smoothly decreases (to 19% with 4 M alkene), but the yield of 26 is unaffected 1 Moreover, correlation of addn/l,3-CH insertion (to 25) for 18 is nicely linear. The simplest interpretation is that 25 comes directly from carbene 18, whereas the 1,2-Me shift product 26 comes from the excited diazirine.27 Interestingly, thermolysis of 24 at 79°C produces 90% of 25 and 10% of 26, but now the yields of both products smoothly decrease in the presence of an alkene. In thermolysis the (electronically) excited diazirine is unavailable, both 25 and 26 stem from the carbene, and their formation is suppressed by the alkene s interception of the carbene. A pyridine ylide kinetic study gave the 1,3-CH insertion rate constant (18 - 25) as 9.3 x 10s s"1.27-47... [Pg.64]

Complexation of sodium to the persulfoxide A (Fig. 13B) appears to inhibit intramolecular hydrogen abstraction to form the hydroperoxy sulfonium ylide (B in Fig. 13A) and allows a direct reaction of 12 with the sodium-complexed persulfoxide, (A in Fig. 13B) to compete. Consistent with this suggestion is the observation that the formation of 13CHO that emanates from the hydroperoxy sulfonium ylide by Pummerer rearrangement and subsequent cleavage is completely suppressed during photo-oxidations of thiolane, 13, in NaMBY ... [Pg.287]

Numerous studies have been directed toward expanding the chemistry of the donor/ac-ceptor-substituted carbenoids to reactions that form new carbon-heteroatom bonds. It is well established that traditional carbenoids will react with heteroatoms to form ylide intermediates [5]. Similar reactions are possible in the rhodium-catalyzed reactions of methyl phenyldiazoacetate (Scheme 14.20). Several examples of O-H insertions to form ethers 158 [109, 110] and S-H insertions to form thioethers 159 [111] have been reported, while reactions with aldehydes and imines lead to the stereoselective formation of epoxides 160 [112, 113] and aziridines 161 [113]. The use of chiral catalysts and pantolactone as a chiral auxiliary has been explored in many of these reactions but overall the results have been rather moderate. Presumably after ylide formation, the rhodium complex disengages before product formation, causing degradation of any initial asymmetric induction. [Pg.326]

Wenkert and Khatuya (51) examined the competition between direct insertion of a carbene into furan (via cyclopropanation) and ylide formation with reactive side-chain functionality such as esters, aldehydes, and acetals. They demonstrated the ease of formation of aldehyde derived carbonyl ylides (Scheme 4.30) as opposed to reaction with the electron-rich olefin of the furan. Treatment of 3-furfural (136) with ethyl diazoacetate (EDA) and rhodium acetate led to formation of ylide 137, followed by trapping with a second molecule of furfural to give the acetal 138 as an equal mixture of isomers at the acetal hydrogen position. [Pg.274]


See other pages where Ylides direct formation is mentioned: [Pg.434]    [Pg.323]    [Pg.478]    [Pg.247]    [Pg.402]    [Pg.969]    [Pg.20]    [Pg.274]    [Pg.969]    [Pg.919]    [Pg.457]    [Pg.433]    [Pg.180]    [Pg.78]    [Pg.100]    [Pg.536]    [Pg.433]    [Pg.82]    [Pg.31]    [Pg.56]    [Pg.661]    [Pg.313]    [Pg.104]    [Pg.419]    [Pg.662]   
See also in sourсe #XX -- [ Pg.3 ]

See also in sourсe #XX -- [ Pg.919 ]

See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Ylide formation

Ylides, formation

© 2024 chempedia.info