Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Whole-cell enzymes, asymmetric

Chiral epoxides and their corresponding vicinal diols are very important intermediates in asymmetric synthesis [163]. Chiral nonracemic epoxides can be obtained through asymmetric epoxidation using either chemical catalysts [164] or enzymes [165-167]. Biocatalytic epoxidations require sophisticated techniques and have thus far found limited application. An alternative approach is the asymmetric hydrolysis of racemic or meso-epoxides using transition-metal catalysts [168] or biocatalysts [169-174]. Epoxide hydrolases (EHs) (EC 3.3.2.3) catalyze the conversion of epoxides to their corresponding vicinal diols. EHs are cofactor-independent enzymes that are almost ubiquitous in nature. They are usually employed as whole cells or crude... [Pg.157]

Metabolic pathways containing dioxygenases in wild-type strains are usually related to detoxification processes upon conversion of aromatic xenobiotics to phenols and catechols, which are more readily excreted. Within such pathways, the intermediate chiral cis-diol is rearomatized by a dihydrodiol-dehydrogenase. While this mild route to catechols is also exploited synthetically [221], the chirality is lost. In the context of asymmetric synthesis, such further biotransformations have to be prevented, which was initially realized by using mutant strains deficient in enzymes responsible for the rearomatization. Today, several dioxygenases with complementary substrate profiles are available, as outlined in Table 9.6. Considering the delicate architecture of these enzyme complexes, recombinant whole-cell-mediated biotransformations are the only option for such conversions. E. coli is preferably used as host and fermentation protocols have been optimized [222,223]. [Pg.257]

Most asymmetric reductions that can be enzymatically effected have been the reactions of ketones. These reactions can be conducted with whole cells as well as with isolated enzymes. In the latter case, of course, at least one equivalent of a cofactor such as NADH or NADPH (nicotinamide adenine dinucleotide) is required to serve as the actual reductant in the reaction system. [Pg.452]

The asymmetric reduction of prochiral functional groups is an extremely useful transformation in organic synthesis. There is an important difference between isolated enzyme-catalyzed reduction reactions and whole cell-catalyzed transformations in terms of the recycling of the essential nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] cofactor. For isolated enzyme-catalyzed reductions, a cofactor recycling system must be introduced to allow the addition of only a catalytic amount (5% mol) of NAD(P)H. For whole cell-catalyzed reductions, cofactor recycling is automatically achieved by the cell, and the addition of a cofactor to the reaction system is normally not required. [Pg.454]

Hydantoinases belong to the E.C.3.5.2 group of cyclic amidases, enzymes that catalyze the hydrolysis of hydantoins 7-11,147). Because synthetic hydantoins are accessible by a variety of chemical syntheses, including Strecker reactions, enan-tioselective hydantoinase-catalyzed hydrolysis offers an attractive and general route to chiral amino acid derivatives. Moreover, because hydantoins are easily racemized chemically or enzymatically by appropriate racemases, dynamic kinetic resolution with potential 100% conversion and complete enantioselectivity is theoretically possible. Indeed, a number of such cases have been reported 147). However, if asymmetric induction is poor or if inversion of enantioselectivity is desired, directed evolution can come to the rescue. Such a case has been reported, specifically in the production of L-methionine as part of a whole cell system E. coll) (Figure 22) 148). [Pg.48]

Diols such as the optically active 1,1 -binaphthyl-2-2 -diol (BINOL) have been used as versatile templates and chiral auxiliaries in catalysts employed successfully in asymmetric synthesis. The application of enzymes in the enantioselective access to axially dissymmetric compounds was first reported by Fujimoto and coworkers.83 In aqueous media, the asymmetric hydrolysis of the racemic binaphthyl dibutyrate (the ester) using whole cells from bacteria species afforded the (A)-diol with 96%ee and the unreacted substrate (A)-ester with 94% ee at 50 % conversion. Recently, in non-aqueous media, lipases from Pseudomonas cepacia and Ps. fluorescens have been employed in the enantioselective resolution and desymmetrization of racemic 6,6 -disubstituted BINOL derivatives using vinyl acetate.84 The monoacetate (K)-73 (product) was obtained in 32-44 % chemical yields and 78-96% ee depending on the derivatives used. The unreacted BINOL (S)-72 was obtained in 30-52 % chemical yield and 55-80% ee. [Pg.216]

Turner, N. J. Asymmetric Synthesis Using Enzymes and Whole Cells. In Advanced Asymmetric Synthesis, Stephenson, G. R. Ed., Chapman Hall London, 1996, p. 260. [Pg.393]

Most biological molecules are chiral and are synthesized in living cells by enzymes using asymmetric catalysis. Chemists also use enzymes or even whole cells to synthesize chiral compounds and for a long... [Pg.3]

CCCs may obtain chiral compounds by classical resolution, kinetic resolution using chemical or enzymatic metlrods, biocatalysis (enzyme systems, whole cells, or cell isolates), fermentation (from growing whole microorganisms), and stereoselective chemistry (e.g., asymmetric reduction, low-temperature reactions, use of chiral auxiliaries). CCCs may also be CCEs by capitalizing on a key raw material position and going downstream. Along with companies manufacturing chiral molecules primarily for other purposes, such as amino acid producers, these will be the key sources for the asymmetric center. [Pg.12]

Enzymes or whole cells can be immobilized in ultrafiltration (UF) and reverse osmosis (RO) membranes by several methods. First, cellulose acetate or polysulfone are used to obtain asymmetric membranes by the phase Inversion technique. Albumin and glutaraldehyde are then used for cell Immobilization within the membranes via co-cross-llnklng methods (25,26). [Pg.450]

Apart from the asymmetric metal catalysis, enantioselective Baeyer-Villiger oxidations mediated by enzymes have been known for some time [32,33,34]. Both whole-cell cultures and isolated enzymes, usually flavin-dependent monooxygenases, can be used to oxidize ketones enantioselectively. For future improvements in the asymmetric Baeyer-VilHger oxidation the use of chiral Lewis acids in combination with an appropriate oxidant seems worthy of intensive investigation. [Pg.768]

Over the past few years, an impressive array of epoxide hydrolases has been identified from microbial sources. Due to the fact that they can be easily employed as whole-cell preparations or crude cell-free extracts in sufficient amounts by fermentation, they are just being recognized as highly versatile biocatalysts for the preparation of enantiopure epoxides and vicinal diols. The future will certainly bring an increasing number of useful applications of these systems to the asymmetric synthesis of chiral bioactive compounds. As for all enzymes, the enantioselectivity of... [Pg.604]

Asymmetric hollow fiber membranes can also be used as selective supports for enzymes. A biocatalyst suspension can in fact be forced through the unskinned surface of asymmetric membranes so that biocatalysts, either enzymes or whole cells, although still suspended, are effectively immobilized within the macroporous spongy part of the membranes.42-53 The enzymatic activity can thus be spread over a large surface, although substrates and products can only diffuse to and from the biocatalyst. [Pg.404]

Clearly, most biocatalytic reactions for the production of fine chemicals are used to obtain enantiopure or enantioemiched compoimds, and only a minor nimiber of syntheses lead to products without chiral centers. More than 65 ap-pHcations of immobilized enzymes or whole cells for industrial research and production have been treated in this review, and it can be stated that approximately 80% utilize the class of hydrolytic enzymes. This number reflects the ease of handling and the broad utility of these enzymes. The reported hydrolytic enzyme applications mainly involve lipases, whereas other hydrolases can only be found in fewer but nevertheless just as attractive cases. The broad field of asymmetric synthesis (e.g., asymmetric reduction/oxidation) is defi-... [Pg.277]

Reduction with isolated enzymes avoids difficulties associated with diffusion limitations and also avoids the presence of many different enzymes, present in the whole cell, which can cause side reactions or reduced enantioselectivity. The main drawback, however, is the instability of the isolated enzyme and the requirement for added co-factor NAD(H) or NADP(H), which are the oxidized (or reduced) forms of nicotinamide adenine diphosphate or its 2 -phosphate derivative. These co-factors are expensive, but can be used as catalysts in the presence of a co-reductant such as formate ion HCOO or an alcohol (e.g. isopropanol or ethanol). The reduction of ketones occurs by transfer of hydride from the C-4 position of the dihydropyridine ring of NADH or NADPH (7.105). Only one of the two hydrogen atoms is transferred and this process occurs within the active site of the enzyme to promote asymmetric reduction. [Pg.456]


See other pages where Whole-cell enzymes, asymmetric is mentioned: [Pg.158]    [Pg.243]    [Pg.19]    [Pg.137]    [Pg.229]    [Pg.455]    [Pg.338]    [Pg.92]    [Pg.13]    [Pg.52]    [Pg.373]    [Pg.4]    [Pg.23]    [Pg.360]    [Pg.70]    [Pg.357]    [Pg.342]    [Pg.592]    [Pg.224]    [Pg.1103]    [Pg.246]    [Pg.33]    [Pg.106]    [Pg.232]    [Pg.312]    [Pg.105]    [Pg.13]    [Pg.304]    [Pg.28]    [Pg.13]    [Pg.429]    [Pg.123]    [Pg.268]   


SEARCH



Enzyme cells

Whole cell

© 2024 chempedia.info