Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wavefunction functional theory

As a final note, be aware that Hartree-Fock calculations performed with small basis sets are many times more prone to finding unstable SCF solutions than are larger calculations. Sometimes this is a result of spin contamination in other cases, the neglect of electron correlation is at the root. The same molecular system may or may not lead to an instability when it is modeled with a larger basis set or a more accurate method such as Density Functional Theory. Nevertheless, wavefunctions should still be checked for stability with the SCF=Stable option. ... [Pg.36]

An important conceptual, or even philosophical, difference between the orbital/wavefunction methods and the density functional methods is that, at least in principle, the density functional methods do not appeal to orbitals. In the former case the theoretical entities are completely unobservable whereas electron density invoked by density functional theories is a genuine observable. Experiments to observe electron densities have been routinely conducted since the development of X-ray and other diffraction techniques (Coppens, 2001).18... [Pg.104]

The usual way chemistry handles electrons is through a quantum-mechanical treatment in the frozen-nuclei approximation, often incorrectly referred to as the Born-Oppenheimer approximation. A description of the electrons involves either a wavefunction ( traditional quantum chemistry) or an electron density representation (density functional theory, DFT). Relativistic quantum chemistry has remained a specialist field and in most calculations of practical... [Pg.51]

We may ask now, whether the same procedure may be applied to density-functional theory, just by replacing the Fock operator by the corresponding Kohn-Sham operator. To this end we have to look at the minimization of the total energy with respect to the density of a multi-determinantal wavefunction 4. We write the density as ... [Pg.143]

The density functional theory (DFT) [32] represents the major alternative to methods based on the Hartree-Fock formalism. In DFT, the focus is not in the wavefunction, but in the electron density. The total energy of an n-electron system can in all generality be expressed as a summation of four terms (equation 4). The first three terms, making reference to the noninteracting kinetic energy, the electron-nucleus Coulomb attraction and the electron-electron Coulomb repulsion, can be computed in a straightforward way. The practical problem of this method is the calculation of the fourth term Exc, the exchange-correlation term, for which the exact expression is not known. [Pg.7]

Space-coordinate density transformations have been used by a number of authors in various contexts related to density functional theory [26,27, 53-64, 85-87]. As the free-electron gas wavefunction is expressed in terms of plane waves associated with a constant density, these transformations were introduced by Macke in 1955 for the purpose of producing modified plane waves that incorporate the density as a variable. In this manner, the density could be then be regarded as the variational object [53, 54]. Thus, explicitly a set of plane waves (defined in the volume V in and having uniform density po = N/V) ... [Pg.173]

In variational treatments of many-particle systems in the context of conventional quantum mechanics, these symmetry conditions are explicitly introduced, either in a direct constructive fashion or by resorting to projection operators. In the usual versions of density functional theory, however, little attention has b n payed to this problem. In our opinion, the basic question has to do with how to incorporate these symmetry conditions - which must be fulfilled by either an exact or approximate wavefunction - into the energy density functional. [Pg.213]

In the constructive approach to density functional theory reviewed here, the extension to excited states is straightforward, provided that the orbit-generating wavefunction s, )eC J satisfies both wavefunction- and Hamiltonian... [Pg.214]

A direction for improving DPT lies in the development of a functional theory based on the one-particle reduced density matrix (1-RDM) D rather than on the one-electron density p. Like 2-RDM, the 1-RDM is a much simpler object than the A-particle wavefunction, but the ensemble A-representability conditions that have to be imposed on variations of are well known [1]. The existence [10] and properties [11] of the total energy functional of the 1-RDM are well established. Its development may be greatly aided by imposition of multiple constraints that are more strict and abundant than their DPT counterparts [12, 13]. [Pg.389]

In 1979, an elegant proof of the existence was provided by Levy [10]. He demonstrated that the universal variational functional for the electron-electron repulsion energy of an A -representable trial 1-RDM can be obtained by searching all antisymmetric wavefunctions that yield a fixed D. It was shown that the functional does not require that a trial function for a variational calculation be associated with a ground state of some external potential. Thus the v-representability is not required, only Al-representability. As a result, the 1-RDM functional theories of preceding works were unified. A year later, Valone [19] extended Levy s pure-state constrained search to include all ensemble representable 1-RDMs. He demonstrated that no new constraints are needed in the occupation-number variation of the energy functional. Diverse con-strained-search density functionals by Lieb [20, 21] also afforded insight into this issue. He proved independently that the constrained minimizations exist. [Pg.390]

Another route to construction of the approximate 1-RDM functional involves employment of expressions for E and D afforded by some size-consistent formalism of electronic structure theory. Mazziotti [42] proposed a geminal functional theory (GET) where an antisymmetric two-particle function (geminal) serves as the fundamental parameter. The one-matrix-geminal relationship allowed him to define a D-based theory from GET [43]. He generalized Levy s constrained search to optimize the universal functionals with respect to 2-RDMs rather than wavefunctions. [Pg.392]

There are only a few studies of 2-density functional theory for Q > 2 [2, 3, 6]. Most studies have concentrated on the pair density, or 2-density functional theory. Excepting the fundamental work of Ziesche, early work in 2-density functional theory focused on a differential equation for the pseudo-two-electron wavefunction [7-11] defined by... [Pg.446]

One of the simplest variational methods in density functional theory was already mentioned in Section I define the pseudo-wavefunction... [Pg.470]

One approach to the treatment of electron correlation is referred to as density functional theory. Density functional models have at their heart the electron density, p(r), as opposed to the many-electron wavefimction, F(ri, r2,...). There are both distinct similarities and distinct differences between traditional wavefunction-based approaches (see following two sections) and electron-density-based methodologies. First, the essential building blocks of a many-electron wavefunction are single-electron (molecular) orbitals, which are directly analogous to the orbitals used in density functional methodologies. Second, both the electron density and the many-electron wavefunction are constructed from an SCF approach which requires nearly identical matrix elements. [Pg.30]

For quantum chemistry, first-row transition metal complexes are perhaps the most difficult systems to treat. First, complex open-shell states and spin couplings are much more difficult to deal with than closed-shell main group compounds. Second, the Hartree—Fock method, which underlies all accurate treatments in wavefunction-based theories, is a very poor starting point and is plagued by multiple instabilities that all represent different chemical resonance structures. On the other hand, density functional theory (DFT) often provides reasonably good structures and energies at an affordable computational cost. Properties, in particular magnetic properties, derived from DFT are often of somewhat more limited accuracy but are still useful for the interpretation of experimental data. [Pg.302]


See other pages where Wavefunction functional theory is mentioned: [Pg.187]    [Pg.187]    [Pg.146]    [Pg.167]    [Pg.104]    [Pg.204]    [Pg.225]    [Pg.189]    [Pg.67]    [Pg.106]    [Pg.293]    [Pg.688]    [Pg.86]    [Pg.442]    [Pg.42]    [Pg.141]    [Pg.184]    [Pg.312]    [Pg.52]    [Pg.87]    [Pg.326]    [Pg.10]    [Pg.104]    [Pg.3]    [Pg.8]    [Pg.240]    [Pg.242]    [Pg.309]    [Pg.444]    [Pg.530]    [Pg.585]    [Pg.17]    [Pg.119]    [Pg.188]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Wavefunction and Density Functional Theories

© 2024 chempedia.info