Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wave functions, molecular, correlated methods

The various methods used in quantum chemistry make it possible to compute equilibrium intermolecular distances, to describe intermolecular forces and chemical reactions too. The usual way to calculate these properties is based on the independent particle model this is the Hartree-Fock method. The expansion of one-electron wave-functions (molecular orbitals) in practice requires technical work on computers. It was believed for years and years that ab initio computations will become a routine task even for large molecules. In spite of the enormous increase and development in computer technique, however, this expectation has not been fulfilled. The treatment of large, extended molecular systems still needs special theoretical background. In other words, some approximations should be used in the methods which describe the properties of molecules of large size and/or interacting systems. The further approximations are to be chosen carefully this caution is especially important when going beyond the HF level. The inclusion of the electron correlation in the calculations in a convenient way is still one of the most significant tasks of quantum chemistry. [Pg.41]

Krishnan R, Binkley J S, Seeger R and Popie J A 1980 Self-consistent molecular orbital methods XX. A basis set for correlated wave functions J. Chem. Phys. 72 650-4... [Pg.2195]

It is a truism that in the past decade density functional theory has made its way from a peripheral position in quantum chemistry to center stage. Of course the often excellent accuracy of the DFT based methods has provided the primary driving force of this development. When one adds to this the computational economy of the calculations, the choice for DFT appears natural and practical. So DFT has conquered the rational minds of the quantum chemists and computational chemists, but has it also won their hearts To many, the success of DFT appeared somewhat miraculous, and maybe even unjust and unjustified. Unjust in view of the easy achievement of accuracy that was so hard to come by in the wave function based methods. And unjustified it appeared to those who doubted the soundness of the theoretical foundations. There has been misunderstanding concerning the status of the one-determinantal approach of Kohn and Sham, which superficially appeared to preclude the incorporation of correlation effects. There has been uneasiness about the molecular orbitals of the Kohn-Sham model, which chemists used qualitatively as they always have used orbitals but which in the physics literature were sometimes denoted as mathematical constructs devoid of physical (let alone chemical) meaning. [Pg.5]

Most of the commonly used electronic-structure methods are based upon Hartree-Fock theory, with electron correlation sometimes included in various ways (Slater, 1974). Typically one begins with a many-electron wave function comprised of one or several Slater determinants and takes the one-electron wave functions to be molecular orbitals (MO s) in the form of linear combinations of atomic orbitals (LCAO s) (An alternative approach, the generalized valence-bond method (see, for example, Schultz and Messmer, 1986), has been used in a few cases but has not been widely applied to defect problems.)... [Pg.531]

When the HF wave function gives a very poor description of the system, i.e. when nondynamical electron correlation is important, the multiconfigurational SCF (MCSCF) method is used. This method is based on a Cl expansion of the wave function in which both the coefficients of the Cl and those of the molecular orbitals are variationally determined. The most common approach is the Complete Active Space SCF (CASSCF) scheme, where the user selects the chemically important molecular orbitals (active space), within which a full Cl is done. [Pg.4]

An example of a multireference technique is the multiconfigurational SCF (MCSCF) approach, where the wave function is obtained by simultaneously optimizing both the molecular orbitals and the configuration coefficients, thereby blending the different resonance structures together. [28] Historically, the MCSCF approach has been used extensively to provide qualitatively accurate representations of surfaces however, this method still suffers two primary drawbacks (1) the ambiguous choice of configurations and (2) the lack of dynamical correlation. [Pg.225]

Krishnan R, Binkley JS, Seeger R, Pople JA(1980) Self-consistent molecular-orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72 650-654... [Pg.100]


See other pages where Wave functions, molecular, correlated methods is mentioned: [Pg.260]    [Pg.41]    [Pg.11]    [Pg.19]    [Pg.1]    [Pg.278]    [Pg.83]    [Pg.248]    [Pg.98]    [Pg.195]    [Pg.259]    [Pg.19]    [Pg.35]    [Pg.82]    [Pg.115]    [Pg.133]    [Pg.153]    [Pg.156]    [Pg.200]    [Pg.253]    [Pg.81]    [Pg.155]    [Pg.160]    [Pg.12]    [Pg.589]    [Pg.184]    [Pg.336]    [Pg.197]    [Pg.407]    [Pg.220]    [Pg.224]    [Pg.227]    [Pg.272]    [Pg.402]    [Pg.2]    [Pg.126]    [Pg.154]    [Pg.338]    [Pg.133]    [Pg.133]    [Pg.52]   


SEARCH



Correlated wave functions

Correlating functions correlated methods

Correlation methods

Correlative methods

Functionalization methods

Molecular functionality

Molecular wave functions

© 2024 chempedia.info