Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Waters, surface activity ratio

Chain-Growth Associative Thickeners. Preparation of hydrophobically modified, water-soluble polymer in aqueous media by a chain-growth mechanism presents a unique challenge in that the hydrophobically modified monomers are surface active and form micelles (50). Although the initiation and propagation occurs primarily in the aqueous phase, when the propagating radical enters the micelle the hydrophobically modified monomers then polymerize in blocks. In addition, the hydrophobically modified monomer possesses a different reactivity ratio (42) than the unmodified monomer, and the composition of the polymer chain therefore varies considerably with conversion (57). The most extensively studied monomer of this class has been acrylamide, but there have been others such as the modification of PVAlc. Pyridine (58) was one of the first chain-growth polymers to be hydrophobically modified. This modification is a post-polymerization alkylation reaction and produces a random distribution of hydrophobic units. [Pg.320]

Reactions leading to surface-active diamides form emulsions of the hydrated [A1(H20)6]C13 complex. However, by hydrolysis of the RPOCl2-AlCl3 complex with water at a molecular ratio of 1 6-7.5 in methylene chloride at a temperature of -10°C, the A1C13 from the complex reacts selectively forming a precipitation of [A1(H20)6]C13, which can be easily filtered off. From the solvent the alkanephosphonic acid dichloride can be isolated in good quality (Table 4). [Pg.581]

Figure 4 illustrates the dependence of on Aq for the case when r = 1 at several different values of [Fig. 4(a)] and when = 0.5 and at several different values of r [Fig. 4(b)]. From Fig. 4(a), one can see that takes a maximum around y = 0, i.e., Aq The volume ratio affects strongly the value of as shown in Fig. 4(b), which is ascribed to the dependence of the equilibrium concentration on r through Eq. (25). This simple example illustrates the necessity of taking into account the variation of the phase-boundary potential, and hence the adsorption of i, when one tries to measure the adsorption properties of a certain ionic species in the oil-water two-phase systems by changing the concentration of i in one of the phases. A similar situation exists also in voltammetric measurements of the transfer of surface-active ions across the polarized O/W interface. In this case, the time-varying thickness of the diffusion layers plays the role of the fixed volume in the above partition example. The adsorption of surface-active ions is hence expected to reach a maximum around the half-wave potential of the ion transfer. [Pg.127]

In the following pages, we will summarise the main processes controlling the fractionation of radionuclides during weathering and transfers into surface waters. Subsequently, we will present the main results obtained on surface weathering and transport in the river waters. Throughout this chapter, we will use parentheses to denote activity ratios. [Pg.533]

The following natural precursors have been selected for KOH activation coal (C), coal semi-coke (CS), pitch semi-coke (PS) and pitch mesophase (PM). An industrial activated carbon (AC) was also used. Activation was performed at 800°C in KOH with 4 1 (C KOH) weight ratio, for 5 hours, followed by a careful washing of the samples with 10% HC1 and distilled water. The activation process supplied highly microporous carbons with BET specific surface areas from 1900 to 3150 m2/g. The BET surface area together with the micro and the total pore volume of the KOH-activated carbons are presented in Table 1. The mean micropore width calculated from the Dubinin equation is designed as LD. [Pg.32]

A promising aspect of RS for probing surface chemistry involves its ability to evaluate the molecular orientation of monolayer coverages via polarization measurements (146). The orientation of a surface active dye, Suminol Milling Brilliant Red BS, has been studied at a water-carbon tetrachloride interface (147). As the surface area per molecule was reduced the spectra showed a transition which was interpreted as a change from a mixture of orientations to one predominantly perpendicular with respect to the surface. A thorough theoretical analysis of the use of depolarization ratios for the prediction of primary surface orientations of adsorbed molecules has also been reported (148). Similar developments are occurring in IR spectrscopy and a determination of the molecular orientations in a series of polymers has been reported (149). [Pg.112]

Applications. In the following paragraphs, the conditions (temperature, time, water/rock mass ratio, surface area) and the results on closed system oxygen consumption and redox conditions of the basalt-water experiments are compared to expected conditions in the open system backfill and near-field environment of an NWRB. Crushing of basalt for pneumatically emplaced backfill could result in a substantial fraction of finegrained basalt with a variety of active surface sites for reaction similar to the crushed basalt used in the experiments. The effects of crushing on rates of mineral-fluid reactions are well documented (10,26). [Pg.188]

Surface active agent Water—cement ratio (by wt) Air content (% by vol.) Specific surface area of bubble (mm2 mm 3) Computed spacing factor (mm)... [Pg.130]


See other pages where Waters, surface activity ratio is mentioned: [Pg.428]    [Pg.5]    [Pg.48]    [Pg.67]    [Pg.363]    [Pg.788]    [Pg.293]    [Pg.337]    [Pg.338]    [Pg.345]    [Pg.469]    [Pg.485]    [Pg.497]    [Pg.554]    [Pg.557]    [Pg.562]    [Pg.592]    [Pg.595]    [Pg.155]    [Pg.57]    [Pg.189]    [Pg.526]    [Pg.201]    [Pg.203]    [Pg.364]    [Pg.404]    [Pg.59]    [Pg.92]    [Pg.41]    [Pg.48]    [Pg.144]    [Pg.392]    [Pg.142]    [Pg.335]    [Pg.171]    [Pg.13]    [Pg.172]    [Pg.196]    [Pg.241]   
See also in sourсe #XX -- [ Pg.366 ]




SEARCH



Activity ratio

Water activation

Water active

Water activity

© 2024 chempedia.info