Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water propene ammoxidation

A commercial iron-promoted catalyst (Sn/Sb/Fe = 1/4/0.25) was studied by Germain et al. [92,93,135,137]. Iron is reported to improve the ammoxidation qualities of the catalyst although it has no effect on the oxidation [93], The kinetics, determined in a flow reactor at 445°C and with a feed ratio C3H6/NH3/air = 1/1.2/10, are essentially similar for this catalyst and bismuth molybdate. The initial selectivity is 80% and the maximum yield is 65% (at 445°C). The initial selectivity markedly depends on the temperature (e.g. 91% at 415°C and 72% at 507°C). The effect of water is hardly significant for this catalyst the acrylonitrile formation is slightly inhibited, while some more acrolein is formed. Presumably, water and ammonia compete in the interaction with the catalyst, which is much less reactive with respect to ammonia than bismuth molybdate. The acrolein ammoxidation is very rapid (about six times the propene ammoxidation rate) and selective (86%). A comparison of the Sn—Sb—Fe—O catalyst with bismuth molybdate is presented in Table 14. [Pg.171]

Table 11 shows that water primarily inhibits the combustion of propene, and thus increases the (initial) selectivity. A comparison of rate coefficients of oxidation and ammoxidation is given in Table 12, and includes the separately studied (amm)oxidation of acrolein. [Pg.167]

Iron oxide is an important component in catalysts used in a number of industrially important processes. Table I shows some notable examples which include iron molybdate catalysts in selective oxidation of methanol to formaldehyde, ferrite catalysts in selective oxidative dehyrogenation of butene to butadiene and of ethylbenzene to styrene, iron antimony oxide in ammoxidation of propene to acrylonitrile, and iron chromium oxide in the high temperature water-gas shift reaction. In some other reactions, iron oxide is added as a promoter to improve the performance of the catalyst. [Pg.159]

The ODH of propane over titanium and vanadium containing zeolites and nonzeolitic catalysts revealed that Ti-silicalite was the most active. The addition of water caused an increase in selectivity, probably due to a competitive adsorption on the active sites. The reaction is proposed to occur on the outer surface of the Ti-silicalite crystallites on Lewis acid sites, and a sulfation of the catalyst, which increases the acidity of these sites, results in a further increase of the catalytic activity. The maximum conversion obtained was 17% with a propene selectivity of up to 74% [65]. Comparison of propane oxidation and ammoxidation over Co-zeolites shows an increase in conversion and propene selectivity during ammoxidation. For a conversion of 14%, 40% propene selectivity was obtained with ammonia, whereas, at 10% conversion the propene selectivity was only 12% with oxygen. The increase in activity and selectivity can be due to the formation of basic sites via ammonia adsorption [38]. [Pg.503]


See other pages where Water propene ammoxidation is mentioned: [Pg.165]    [Pg.139]    [Pg.1298]    [Pg.34]    [Pg.1469]   
See also in sourсe #XX -- [ Pg.332 ]




SEARCH



Ammoxidation

Propene, ammoxidation

© 2024 chempedia.info