Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water anodic oxide

Anodic Oxidation. The abiUty of tantalum to support a stable, insulating anodic oxide film accounts for the majority of tantalum powder usage (see Thin films). The film is produced or formed by making the metal, usually as a sintered porous pellet, the anode in an electrochemical cell. The electrolyte is most often a dilute aqueous solution of phosphoric acid, although high voltage appHcations often require substitution of some of the water with more aprotic solvents like ethylene glycol or Carbowax (49). The electrolyte temperature is between 60 and 90°C. [Pg.331]

If the potential of a metal surface is moved below line a, the hydrogen reaction line, cathodic hydrogen evolution is favored on the surface. Similarly a potential below line b, the oxygen reaction line, favors the cathodic oxygen reduction reaction. A potential above the oxygen reaction line favors oxygen evolution by the anodic oxidation of water. In between these two lines is the region where water is thermodynamically stable. [Pg.276]

Peroxodisulfuric acid, H2S2O8, is a colourless solid mp 65° (with decomposition). The acid is soluble in water in all proportions and its most important salts, (NH4)2S208 and K2S2O8, are also freely soluble. These salts are, in fact, easier to prepare than the acid and both are made on an industrial scale by anodic oxidation of the corresponding sulfates under carefully controlled conditions (high current density, T < 30°, bright Pt electrodes, protected cathode). The structure of the peroxo-disulfate ion [now preferably called hexaoxo-/r-peroxodisulfate(2-)]0 l is OaSOOSOa " with... [Pg.713]

Similar considerations apply to oxidation. An anion which is considerably more stable than water will be unaffected in the neighbourhood of the anode. With a soluble anode, in principle, an anion only needs be more stable than the dissolution potential of the anode metal, but with an insoluble anode it must be stable at the potential for water oxidation (equation 12.4 or 12.5) plus any margin of polarisation. The metal salts, other than those of the metal being deposited, used for electroplating are chosen to combine solubility, cheapness and stability to anode oxidation and cathode reduction. The anions most widely used are SOj", Cl", F and complex fluorides BF4, SiFj , Br , CN and complex cyanides. The nitrate ion is usually avoided because it is too easily reduced at the cathode. Sulphite,... [Pg.343]

Faraday, in 1834, was the first to encounter Kolbe-electrolysis, when he studied the electrolysis of an aqueous acetate solution [1], However, it was Kolbe, in 1849, who recognized the reaction and applied it to the synthesis of a number of hydrocarbons [2]. Thereby the name of the reaction originated. Later on Wurtz demonstrated that unsymmetrical coupling products could be prepared by coelectrolysis of two different alkanoates [3]. Difficulties in the coupling of dicarboxylic acids were overcome by Crum-Brown and Walker, when they electrolysed the half esters of the diacids instead [4]. This way a simple route to useful long chain l,n-dicarboxylic acids was developed. In some cases the Kolbe dimerization failed and alkenes, alcohols or esters became the main products. The formation of alcohols by anodic oxidation of carboxylates in water was called the Hofer-Moest reaction [5]. Further applications and limitations were afterwards foimd by Fichter [6]. Weedon extensively applied the Kolbe reaction to the synthesis of rare fatty acids and similar natural products [7]. Later on key features of the mechanism were worked out by Eberson [8] and Utley [9] from the point of view of organic chemists and by Conway [10] from the point of view of a physical chemist. In Germany [11], Russia [12], and Japan [13] Kolbe electrolysis of adipic halfesters has been scaled up to a technical process. [Pg.92]

Fig. 17. Cyclic voltammogram of the water-soluble Rieske fragment from the bci complex of Paracoccus denitrificans (ISFpd) at the nitric acid modified glassy carbon electrode. Protein concentration, 1 mg/ml in 50 mM NaCl, 10 mM MOPS, 5 mM EPPS, pH 7.3 T, 25°C scan rate, 10 mV/s. The cathodic (reducing branch, 7 < 0) and anodic (oxidizing branch, 7 > 0) peak potentisds Emd the resulting midpoint potential are indicated. SHE, standEU d hydrogen electrode. Fig. 17. Cyclic voltammogram of the water-soluble Rieske fragment from the bci complex of Paracoccus denitrificans (ISFpd) at the nitric acid modified glassy carbon electrode. Protein concentration, 1 mg/ml in 50 mM NaCl, 10 mM MOPS, 5 mM EPPS, pH 7.3 T, 25°C scan rate, 10 mV/s. The cathodic (reducing branch, 7 < 0) and anodic (oxidizing branch, 7 > 0) peak potentisds Emd the resulting midpoint potential are indicated. SHE, standEU d hydrogen electrode.
The data are the E ° values for the half-reactions, which are given in the problem. Under standard conditions, permanganate is reduced to Mn at the cathode, and water is oxidized at the anode ... [Pg.1395]

The electrochemical preparation of metal chalcogenide compounds has been demonstrated by numerous research groups and reviewed in a number of publications [ 1-3]. For the most part, the methods that have been used comprise (a) cathodic co-reduction of the metal ion and a chalcogen oxoanion in aqueous solution onto an inert substrate (b) cathodic deposition from a solvent containing metal ions and the chalcogen in elemental form (the chalcogens are not soluble in water under normal conditions, so these reactions are carried out in non-aqueous solvents) (c) anodic oxidation of the parent metal in a chalconide-containing aqueous electrolyte. [Pg.78]

The electrochemistry of single-crystal and polycrystalline pyrite electrodes in acidic and alkaline aqueous solutions has been investigated extensively. Emphasis has been laid on the complex anodic oxidation process of pyrite and its products, which appears to proceed via an autocatalytic pathway [160]. A number of investigations and reviews have been published on this subject [161]. Electrochemical corrosion has been observed in the dark on single crystals and, more drastically, on polycrystalline pyrite [162]. Overall, the electrochemical path for the corrosion of n-EeS2 pyrite in water under illumination has been described as a 15 h" reaction ... [Pg.248]

The formation of hydrogen peroxide by anodic oxidation of water has so far not been realized. [Pg.16]

Anodic oxidation has been employed for water-soluble triphenyl-methane dyes. It has been shown that the formation of dye is an irreversible two-electron oxidation process.21-23 This method has been used for the oxidation of diamino triphenylmethane leuco compounds containing two to four sulfonic acid groups to obtain food-grade colored materials.24... [Pg.130]

Low-valent lanthanides represented by Sm(II) compounds induce one-electron reduction. Recycling of the Sm(II) species is first performed by electrochemical reduction of the Sm(III) species [32], In one-component cell electrolysis, the use of sacrificial anodes of Mg or A1 allows the samarium-catalyzed pinacol coupling. Samarium alkoxides are involved in the transmet-allation reaction of Sm(III)/Mg(II), liberating the Sm(III) species followed by further electrochemical reduction to re-enter the catalytic cycle. The Mg(II) ion is formed in situ by anodic oxidation. SmCl3 can be used in DMF or NMP as a catalyst precursor without the preparation of air- and water-sensitive Sm(II) derivatives such as Sml2 or Cp2Sm. [Pg.70]

Environmental tests have been combined with conventional electrochemical measurements by Smallen et al. [131] and by Novotny and Staud [132], The first electrochemical tests on CoCr thin-film alloys were published by Wang et al. [133]. Kobayashi et al. [134] reported electrochemical data coupled with surface analysis of anodically oxidized amorphous CoX alloys, with X = Ta, Nb, Ti or Zr. Brusic et al. [125] presented potentiodynamic polarization curves obtained on electroless CoP and sputtered Co, CoNi, CoTi, and CoCr in distilled water. The results indicate that the thin-film alloys behave similarly to the bulk materials [133], The protective film is less than 5 nm thick [127] and rich in a passivating metal oxide, such as chromium oxide [133, 134], Such an oxide forms preferentially if the Cr content in the alloy is, depending on the author, above 10% [130], 14% [131], 16% [127], or 17% [133], It is thought to stabilize the non-passivating cobalt oxides [123], Once covered by stable oxide, the alloy surface shows much higher corrosion potential and lower corrosion rate than Co, i.e. it shows more noble behavior [125]. [Pg.274]

According to El-Mashri et al.,190 the A106 A104 ratio determines the hydration capacity of anodic oxides. Tetrahedral sites are hydrated easily to form a boehmite-like structure, which is known to be composed of double layers of Al-centered octahedra, weakly linked by water molecules to other layers.184 As the oxide formed in H3P04 contains about 70% tetrahedral aluminum bonds, its hydration ability should be higher than that of the oxide formed in tartrate solution. However, this has not been found in practice, which is interpreted by El-Mashri et al. as being due to some reduction of A104 by incorporated phosphate species. [Pg.459]

Various mechanisms for electret effect formation in anodic oxides have been proposed. Lobushkin and co-workers241,242 assumed that it is caused by electrons captured at deep trap levels in oxides. This point of view was supported by Zudov and Zudova.244,250 Mikho and Koleboshin272 postulated that the surface charge of anodic oxides is caused by dissociation of water molecules at the oxide-electrolyte interface and absorption of OH groups. This mechanism was put forward to explain the restoration of the electret effect by UV irradiation of depolarized samples. Parkhutik and Shershulskii62 assumed that the electret effect is caused by the accumulation of incorporated anions into the growing oxide. They based their conclusions on measurements of the kinetics of Us accumulation in anodic oxides and comparative analyses of the kinetics of chemical composition variation of growing oxides. [Pg.479]

Positions of Excitation and Emission Maxima of PL in Anodic Oxide Films Formed in Various Electrolytes by DC Anodization and in Boiling Water... [Pg.486]


See other pages where Water anodic oxide is mentioned: [Pg.290]    [Pg.118]    [Pg.445]    [Pg.290]    [Pg.118]    [Pg.445]    [Pg.35]    [Pg.173]    [Pg.292]    [Pg.69]    [Pg.515]    [Pg.967]    [Pg.1082]    [Pg.120]    [Pg.753]    [Pg.944]    [Pg.822]    [Pg.252]    [Pg.289]    [Pg.261]    [Pg.271]    [Pg.409]    [Pg.252]    [Pg.456]    [Pg.395]    [Pg.311]    [Pg.311]    [Pg.370]    [Pg.322]    [Pg.375]    [Pg.125]    [Pg.405]    [Pg.463]    [Pg.468]    [Pg.479]    [Pg.487]    [Pg.488]    [Pg.114]   
See also in sourсe #XX -- [ Pg.99 , Pg.105 , Pg.118 ]




SEARCH



Anode oxidation

Anodes oxides

Anodic oxidation

Anodic oxides

Oxidant water

Water oxidation

© 2024 chempedia.info