Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

VSEPR repulsion theory

Now that we know how to determine hybridization states, we need to know the geometry of each of the three hybridization states. One simple theory explains it all. This theory is called the valence shell electron pair repulsion theory (VSEPR). Stated simply, all orbitals containing electrons in the outermost shell (the valence shell) want to get as far apart from each other as possible. This one simple idea is all you need to predict the geometry around an atom. First, let s apply the theory to the three types of hybridized orbitals. [Pg.78]

Due to the simplicity and the ability to explain the spectroscopic and excited state properties, the MO theory in addition to easy adaptability for modern computers has gained tremendous popularity among chemists. The concept of directed valence, based on the principle of maximum overlap and valence shell electron pair repulsion theory (VSEPR), has successfully explained the molecular geometries and bonding in polyatomic molecules. [Pg.29]

VSEPR theory The VSEPR (valence shell electron-pair repulsion) theory says that the electron pairs around a central atom will try to get as far as possible from each other in order to minimize the repulsive forces. This theory is used to predict molecular geometry. [Pg.366]

The most useful approach in predicting the stereochemistry of coordination compounds is the Valence Shell Electron Pair Repulsion theory (VSEPR theory), which is based on the idea that the electron pairs around an atom will be arranged so as to minimize the repulsion between them. The qualitative foundations of this field were laid by Sidgwick and Powell1 in 1940 and by Gillespie... [Pg.32]

Valence shell electron pair repulsion theory (VSEPR)... [Pg.11]

Atoms are bound into molecules by shared pairs of electrons. Electrons dislike each other because like charges repel each other. Therefore, whether they are lone pairs of electrons or bonding pairs of electrons, electron pairs try to get as far apart in space as is geometrically possible. There is a fancy name that summarizes these simple ideas the VSEPR theory, which stands for Valence Shell Electron Pair Repulsion Theory. Even though the VSEPR theory is founded on fundamentally simple ideas, it is a tremendously powerful tool for predicting the shapes of molecules. [Pg.161]

Various have been developed and theories put forward to find an answer to the questions like why the molecules acquire a particular shape and what decides the bond lengths, bond angles and bond strength of the bonds that hold atoms in a molecule. One of these is Valence Shell Electron Pair Repulsion Theory (VSEPR Theory). [Pg.188]

The shapes of molecules are determined by actual experiments, not by theoretical considerations. But we do not want to have to memorize the shape of each molecule. Instead, we would like to be able to look at a Lewis structure and predict the shape of the molecule. Several models enable us to do this. One of the easiest to use is valence shell electron pair repulsion theory, which is often referred to by its acronym VSEPR (pronounced vesper ). As the name implies, the theory states that pairs of electrons in the valence shell repel each other and try to stay as far apart as possible. You probably remember this theory from your general chemistry class. The parts of VSEPR theory that... [Pg.18]

VSEPR (Section 1.6B) Valence Shell Electron Pair Repulsion theory. A theory that determines the three-dimensional shape of a molecule by the number of groups surrounding a central atom. The most stable arrangement keeps the groups as far away from each other as possible. [Pg.1212]

The geometry shown is predicted by VSEPR (valence shell electron pair repulsion) theory, in which orbitals containing valence electrons are directed so that the electrons are as far apart as possible. An asterisk indicates a hybridized atom. [Pg.15]

Valence shell electron pair repulsion theory (VSEPR) provides a method for predicting the shape of molecules, based on the electron pair electrostatic repulsion. It was described by Sidgwick and Powell" in 1940 and further developed by Gillespie and Nyholm in 1957. In spite of this method s very simple approach, based on Lewis electron-dot structures, the VSEPR method predicts shapes that compare favorably with those determined experimentally. However, this approach at best provides approximate shapes for molecules, not a complete picture of bonding. The most common method of determining the actual stmctures is X-ray diffraction, although electron diffraction, neutron diffraction, and many types of spectroscopy are also used. In Chapter 5, we will provide some of the molecular orbital arguments for the shapes of simple molecules. [Pg.57]

The rules and principles of molecular geometry accurately predict the shapes of simple molecules such as methane (CH4), water (H2O), or ammonia (NH3). As molecules become increasingly complex, however, it becomes very difficult, but not impossible, to predict and describe complex geometric arrangements of atoms. The number of bonds between atoms, the types of bonds, and the presence of lone electron pairs on the central atom in the molecule critically influence the arrangement of atoms in a molecule. In addition, use of valance shell electron pair repulsion theory (VSEPR) allows chemists to predict the shape of a molecule. [Pg.394]

VSEPR therory—The valance shell electron pair repulsion theory (VSEPR) is a theory of electron spacing and distribution used to predict bond angles in a molecule. [Pg.395]

Valence shell electron pair repulsion theory places the two electron pairs on Be 180° apart, that is, with linear electronic geometry. Both electron pairs are bonding pairs, so VSEPR also predicts a linear atomic arrangement, or linear molecular geometry, for BeCl2. [Pg.314]

VSEPR theory (10) Valence shell electron pair repulsion theory, which predicts the three-dimensional shape of molecules and ions based on the arrangement of electron pairs (nonbonding pairs and bonds) about the central atom. [Pg.418]

As, and Sb, X is F, Q, Br, and I, and Y is O and S, are summarized in a review paper by Kuchitsu Trends observed in these molecules are well accounted for qualitatively by the valence-shell electron-pair repulsion theory (VSEPR) ... [Pg.111]


See other pages where VSEPR repulsion theory is mentioned: [Pg.415]    [Pg.62]    [Pg.40]    [Pg.178]    [Pg.83]    [Pg.84]    [Pg.62]    [Pg.48]    [Pg.83]    [Pg.2727]    [Pg.180]    [Pg.925]    [Pg.21]    [Pg.84]    [Pg.806]    [Pg.23]   


SEARCH



VSEPR

VSEPR theory

VSEPR-Theorie

© 2024 chempedia.info