Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Voltammetry, oxidation potential

More recent research provides reversible oxidation-reduction potential data (17). These allow the derivation of better stmcture-activity relationships in both photographic sensitization and other systems where electron-transfer sensitizers are important (see Dyes, sensitizing). Data for an extensive series of cyanine dyes are pubflshed, as obtained by second harmonic a-c voltammetry (17). A recent "quantitative stmcture-activity relationship" (QSAR) (34) shows that Brooker deviations for the heterocycHc nuclei (discussed above) can provide estimates of the oxidation potentials within 0.05 V. An oxidation potential plus a dye s absorption energy provide reduction potential estimates. Different regression equations were used for dyes with one-, three-, five-methine carbons in the chromophore. Also noted in Ref. 34 are previous correlations relating Brooker deviations for many heterocycHc nuclei to the piC (for protonation/decolorization) for carbocyanine dyes the piC is thus inversely related to oxidation potential values. [Pg.396]

There is some evidence that Cs + can be formed by cyclic voltammetry of Cs+[OTeF5] in pure MeCN at the extremely high oxidizing potential of 3 V, and that Cs + might be stabilized by 18-crown-6 and cryptand (see pp. 96 and 97 for nomenclature). However, the isolation of pure compounds containing Cs + has so far not been reported. [Pg.83]

For PPV-imine and PPV-ether the oxidation potential, measured by cyclic voltammetry using Ag/AgCl as a reference are ,M.=0.8 eV and 0.92 eV, respectively. By adopting the values 4.6 eV and 4.8 eV for the work functions of a Ag/AgCl and an 1TO electrode, respectively, one arrives at zero field injection barriers of 0.4 and 0.55 eV. These values represent lower bounds because cyclic voltammetry is carried out in polar solvents in which the stabilization cncigy of radical ions exceeds that in a polymer film, where only electronic polarization takes place. E x values for LPPP and PPPV are not available but in theory they should exceed those of PPV-imine and PPV-ether. [Pg.513]

Figure 29. (a) Evolution of the absorption spectra of an electro-chromic polypyrrole as a function of the oxidation potential obtained during voltammetry between -900 and 400 mV from a 2.5 M LiCI04 aqueous solution. The voltammetry was performed at a scan rate of 20 mV s 1. (From Ref. 161). (b) Evolution of the absorption spectra of an electrochromic polypyrrole as a function of the reduction potential obtained during voltammetry between 400 and -900 mV from a 2.5 M LiCI04 aqueous solution. The voltammetry was performed at a scan rate of 20 mV s 1. (From Ref. 161). [Pg.363]

The coordination of redox-active ligands such as 1,2-bis-dithiolates, to the M03Q7 cluster unit, results in oxidation-active complexes in sharp contrast with the electrochemical behavior found for the [Mo3S7Br6] di-anion for which no oxidation process is observed by cyclic voltammetry in acetonitrile within the allowed solvent window [38]. The oxidation potentials are easily accessible and this property can be used to obtain a new family of single-component molecular conductors as will be presented in the next section. Upon reduction, [M03S7 (dithiolate)3] type-11 complexes transform into [Mo3S4(dithiolate)3] type-I dianions, as represented in Eq. (7). [Pg.114]

The oxidation potential of carbanions, ox> or the reduction potential of carbocations, red> could be a practical scale of stability as defined by (3). These potentials can be measured by voltammetry, although the scale is subject to assumptions regarding elimination of the diffusional potential and solvation effects. [Pg.178]

In this section, we will present and discuss cyclic voltammetry and potential-step DBMS data on the electro-oxidation ( stripping ) of pre-adsorbed residues formed upon adsorption of formic acid, formaldehyde, and methanol, and compare these data with the oxidative stripping of a CO adlayer formed upon exposure of a Pt/ Vulcan catalyst to a CO-containing (either CO- or CO/Ar-saturated) electrolyte as reference. We will identify adsorbed species from the ratio of the mass spectrometric and faradaic stripping charge, determine the adsorbate coverage relative to a saturated CO adlayer, and discuss mass spectrometric and faradaic current transients after adsorption at 0.16 V and a subsequent potential step to 0.6 V. [Pg.417]

Another ligand including a thiophene moiety but lacking the C2-symmetry and thus bearing electronically different phosphorus atoms was prepared by these authors, in 2001. The electrochemical oxidative potential was obtained by cyclic voltammetry. The oxidation potential of the phosphine group located on the phenyl ring was found to be 0.74 V (vs. Ag/Ag" ) and the authors attributed a value of 0.91 V to the phosphine attached to the thiophene moiety. This second functionality is a rather electron-poor phosphine. As shown... [Pg.194]

Ag+/Ag, in the range of the oxidation potential of 3-methylthiophene, (14.) due to the irreversible oxidation of the monomeric thiophene unit. Figure 1 shows the typical cyclic voltammetry upon repeatedly scanning the potential of a Pt electrode between 0.0 V and 1.5 V vs. Ag+/Ag in a solution of 0.2 M 1. [Pg.414]

Figure 3. Cyclic voltammetry of adjacent electrodes of a poly(I)-coated microelectrode array driven individually and together at 200 mV/s in the region of the oxidative potential of polythiophene in CH3CN/O.I II [11-BU4N] PFg. Figure 3. Cyclic voltammetry of adjacent electrodes of a poly(I)-coated microelectrode array driven individually and together at 200 mV/s in the region of the oxidative potential of polythiophene in CH3CN/O.I II [11-BU4N] PFg.
Chemical reactivity of unfunctionalized organosilicon compounds, the tetraalkylsilanes, are generally very low. There has been virtually no method for the selective transformation of unfunctionalized tetraalkylsilanes into other compounds under mild conditions. The electrochemical reactivity of tetraalkylsilanes is also very low. Kochi et al. have reported the oxidation potentials of tetraalkyl group-14-metal compounds determined by cyclic voltammetry [2]. The oxidation potential (Ep) increases in the order of Pb < Sn < Ge < Si as shown in Table 1. The order of the oxidation potential is the same as that of the ionization potentials and the steric effect of the alkyl group is very small. Therefore, the electron transfer is suggested as proceeding by an outer-sphere process. However, it seems to be difficult to oxidize tetraalkylsilanes electro-chemically in a practical sense because the oxidation potentials are outside the electrochemical windows of the usual supporting electrolyte/solvent systems (>2.5 V). [Pg.50]

The cyclic voltammetry of polysilanes adsorbed on the electrode surface has also been investigated [65]. The oxidation potentials depend upon the nature of the organic groups on silicon. The electrochemical oxidation is irreversible to give soluble products which are liberated from the surface of the anode. [Pg.78]

If a stationary electrode is used, such as platinum, gold, or glassy carbon, the technique is called voltammetry. One useful voltammetric technique is called stripping voltammetry, in which the product of a reduction is deposited on the surface on purpose and then stripped off by an oxidizing potential— a potential at which the oxidation of the previously deposited material occurs. This technique can also use a mercury electrode, but one that is held stationary. [Pg.407]

Several electrochemical techniques may yield the reduction or oxidation potentials displayed in figure 16.1 [332-334], In this chapter, we examine and illustrate the application of two of those techniques cyclic voltammetry and photomodulation voltammetry. Both (particularly the former) have provided significant contributions to the thermochemical database. But before we do that, let us recall some basic ideas that link electrochemistry with thermodynamics. More in-depth views of this relationship are presented in some general physical-chemistry and thermodynamics textbooks [180,316]. A detailed discussion of theory and applications of electrochemistry may be found in more specialized works [332-334],... [Pg.229]

Oxidation peak potentials of phenol derivatives were measured with cyclic voltammetry 0.53, 0.47, 0.47, 0.28, and 0.77 V vs. Ag/ AgCl for phenol, 2,6-dimethyl-, 2,6-diphenyl-, 2,6-dimethoxy-, and 2,6-dichlorophenol respectively. The oxidation potential of phenol and 2,6-dichlorophenol are relatively high and this high potential is one of the reasons why phenol and dichlorophenol could not he polymerized by the oxidation with copper catalyst or lead dioxide. On the other hand, for the electro-oxidative polymerization the potential can he kept slightly higher than the oxidation potential of phenols and the polymerization proceeds. [Pg.182]

A report was concerned with the ability of nitroxyl radicals, such as TEMPO and other related structures, to act as catalysts in the asymmetric oxidation of alcohols. Cyclic voltammetry was used to measure the oxidation potentials of the nitroxyl... [Pg.162]

The first ( ) and second (E ) oxidation potentials (versus saturated calomel electrode (SCE)) have been determined by voltammetry. The electrochemistry of the 4-(tel-luropyranyl)-4//-telluropyran has been examinated and compared to the O, S and Se analogues. [Pg.311]


See other pages where Voltammetry, oxidation potential is mentioned: [Pg.147]    [Pg.37]    [Pg.306]    [Pg.366]    [Pg.193]    [Pg.18]    [Pg.38]    [Pg.47]    [Pg.203]    [Pg.420]    [Pg.491]    [Pg.144]    [Pg.706]    [Pg.708]    [Pg.414]    [Pg.417]    [Pg.26]    [Pg.485]    [Pg.578]    [Pg.206]    [Pg.147]    [Pg.439]    [Pg.117]    [Pg.287]    [Pg.78]    [Pg.97]    [Pg.105]    [Pg.146]    [Pg.293]    [Pg.322]    [Pg.754]   


SEARCH



Cyclic voltammetry reduction/oxidation potential evaluation

Cyclic voltammetry, oxidation potential

Cyclic voltammetry, oxidation potential determination

Oxidation potential

Oxidizing potential

Voltammetry, oxidation potential determination

© 2024 chempedia.info