Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Virial energy

For Saturn versus Jupiter the story is a bit clearer. Models of the interior and evolution of Jupiter (described further below) produce the currently observed effective temperature with only sunlight and the original virialized energy of collapse no additional differentiation is required at present. However, in the case of Saturn, additional energy is required to obtain a body of its effective temperature and mass at an age of 4.56 Gyr, implying that differentiation is... [Pg.622]

Using Eq. (4.2) as the regional virial theorem the basin energy may be expressed just by the regional kinetic or total virial energies ... [Pg.94]

This section discusses how spectroscopy, molecular beam scattering, pressure virial coeflScients, measurements on transport phenomena and even condensed phase data can help detemiine a potential energy surface. [Pg.200]

The third virial coefficient C(7) depends upon tliree-body interactions, both additive and non-additive. The relationship is well understood [106. 107. 111]. If the pair potential is known precisely, then C(7) ought to serve as a good probe of the non-additive, tliree-body interaction energy. The importance of the non-additive contribution has been confimied by C(7) measurements. Unfortunately, large experimental uncertainties in C (7) have precluded unequivocal tests of details of the non-additive, tliree-body interaction. [Pg.202]

Hu C H and Thakkar A J 1996 Potential energy surface for interactions between N2 and He ab initio calculations, analytic fits, and second virial coefficients J. Chem. Phys. 104 2541... [Pg.214]

The presence of tln-ee-body interactions in the total potential energy leads to an additional temi in the internal energy and virial pressure involving the three-body potential / 2, r, and the corresponding tlnee-... [Pg.474]

The themiodynamic properties calculated by different routes are different, since the MS solution is an approximation. The osmotic coefficient from the virial pressure, compressibility and energy equations are not the same. Of these, the energy equation is the most accurate by comparison with computer simulations of Card and Valleau [ ]. The osmotic coefficients from the virial and compressibility equations are... [Pg.495]

The osmotic coefficients from the HNC approximation were calculated from the virial and compressibility equations the discrepancy between ([ly and ((ij is a measure of the accuracy of the approximation. The osmotic coefficients calculated via the energy equation in the MS approximation are comparable in accuracy to the HNC approximation for low valence electrolytes. Figure A2.3.15 shows deviations from the Debye-Htickel limiting law for the energy and osmotic coefficient of a 2-2 RPM electrolyte according to several theories. [Pg.497]

By integrating over the hard cores in the SL expansion and collecting tenns it is easily shown this expansion may be viewed as a correction to the MS approximation which still lacks the complete second virial coefficient. Since the MS approximation has a simple analytic fomi within an accuracy comparable to the Pade (SL6(P)) approximation it may be more convenient to consider the union of the MS approximation with Mayer theory. Systematic improvements to the MS approxunation for the free energy were used to detemiine... [Pg.513]

Thus one must rely on macroscopic theories and empirical adjustments for the determination of potentials of mean force. Such empirical adjustments use free energy data as solubilities, partition coefficients, virial coefficients, phase diagrams, etc., while the frictional terms are derived from diffusion coefficients and macroscopic theories for hydrodynamic interactions. In this whole field of enquiry progress is slow and much work (and thought ) will be needed in the future. [Pg.22]

The pressure often fluctuates much more than quantities such as the total energy in constant NVE molecular dynamics simulation. This is as expected because the pressure related to the virial, which is obtained as the product of the positions and the derivativ of the potential energy function. This product, rijdf rij)/drij, changes more quickly with than does the internal energy, hence the greater fluctuation in the pressure. [Pg.401]

The energy obtained from a calculation using ECP basis sets is termed valence energy. Also, the virial theorem no longer applies to the calculation. Some molecular properties may no longer be computed accurately if they are dependent on the electron density near the nucleus. [Pg.84]

SAN resins show considerable resistance to solvents and are insoluble in carbon tetrachloride, ethyl alcohol, gasoline, and hydrocarbon solvents. They are swelled by solvents such as ben2ene, ether, and toluene. Polar solvents such as acetone, chloroform, dioxane, methyl ethyl ketone, and pyridine will dissolve SAN (14). The interactions of various solvents and SAN copolymers containing up to 52% acrylonitrile have been studied along with their thermodynamic parameters, ie, the second virial coefficient, free-energy parameter, expansion factor, and intrinsic viscosity (15). [Pg.192]

An overview of some basic mathematical techniques for data correlation is to be found herein together with background on several types of physical property correlating techniques and a road map for the use of selected methods. Methods are presented for the correlation of observed experimental data to physical properties such as critical properties, normal boiling point, molar volume, vapor pressure, heats of vaporization and fusion, heat capacity, surface tension, viscosity, thermal conductivity, acentric factor, flammability limits, enthalpy of formation, Gibbs energy, entropy, activity coefficients, Henry s constant, octanol—water partition coefficients, diffusion coefficients, virial coefficients, chemical reactivity, and toxicological parameters. [Pg.232]

Gamma/Phi Approach For many XT E systems of interest the pressure is low enough that a relatively simple equation of state, such as the two-term virial equation, is satisfactoiy for the vapor phase. Liquid-phase behavior, on the other hand, may be conveniently described by an equation for the excess Gibbs energy, from which activity coefficients are derived. The fugacity of species i in the liquid phase is then given by Eq. (4-102), written... [Pg.535]

The energy of a Is-electron in a hydrogen-like system (one nucleus and one electron) is —Z /2, and classically this is equal to minus the kinetic energy, 1/2 mv, due to the virial theorem E — —T = 1/2 V). In atomic units the classical velocity of a Is-electron is thus Z m= 1). The speed of light in these units is 137.036, and it is clear that relativistic effects cannot be neglected for the core electrons in heavy nuclei. For nuclei with large Z, the Is-electrons are relativistic and thus heavier, which has the effect that the 1 s-orbital shrinks in size, by the same factor by which the mass increases (eq. (8.2)). [Pg.204]

Intermolecular potential functions have been fitted to various experimental data, such as second virial coefficients, viscosities, and sublimation energy. The use of data from dense systems involves the additional assumption of the additivity of pair interactions. The viscosity seems to be more sensitive to the shape of the potential than the second virial coefficient hence data from that source are particularly valuable. These questions are discussed in full by Hirschfelder, Curtiss, and Bird17 whose recommended potentials based primarily on viscosity data are given in the tables of this section. [Pg.70]

Any changes in the potential energy because of the Coulomb correlation must therefore also influence the kinetic energy. The virial theorem will be further discussed below. [Pg.217]

If a trial function 9 leads to a kinetic energy 1 and a potential energy Vx which do not fulfill the virial theorem (Eq. 11.15), the total energy (7 +Ei) is usually far from the correct result. Fortunately, there exists a very simple scaling procedure by means of which one can construct a new trial function which not only satisfies the virial theorem but also leads to a considerably better total energy. The scaling idea goes back to a classical paper by Hylleraas (1929), but the connection with the virial theorem was first pointed out by Fock.5 It is remarkable how many times this idea has been rediscovered and published in the modern literature. [Pg.219]

In the derivation above, we have included the kinetic energy of the nuclei in the Hamiltonian and considered a stationary state. In Eq. II.3, this term has been neglected, and we have instead assumed that the nuclei have given fixed positions. It has been pointed out by Slater34 that, if the nuclei are not situated in the proper equilibrium positions, the virial theorem will appear in a slightly different form. (A variational derivation has been given by Hirschfelder and Kincaid.11)... [Pg.221]

Wigner s formula is open to criticism also on another point, since he assumes the existence of a stationary electron state where the density is so low that the kinetic energy may be neglected. This is in contradiction to the virial theorem (Eq. 11.15), which tells us that the kinetic energy can never be neglected in comparison to the potential energy and that the latter quantity is compensated by the former to fifty per cent. A reexamination of the low density case would hence definitely be a problem of essential interest. [Pg.255]


See other pages where Virial energy is mentioned: [Pg.92]    [Pg.440]    [Pg.138]    [Pg.92]    [Pg.440]    [Pg.138]    [Pg.657]    [Pg.3]    [Pg.17]    [Pg.202]    [Pg.491]    [Pg.491]    [Pg.503]    [Pg.512]    [Pg.550]    [Pg.1255]    [Pg.357]    [Pg.237]    [Pg.502]    [Pg.248]    [Pg.512]    [Pg.348]    [Pg.106]    [Pg.216]    [Pg.219]    [Pg.222]    [Pg.223]    [Pg.234]    [Pg.238]    [Pg.244]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Virial

© 2024 chempedia.info